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1. 04/02/2020

1.1. Cohomology.

Proposition 1.1. For any ringed space (X,OX), the category of OX-modules has enough injec-

tives.
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Proof. Find such an injective for each stalk Fx ↪→ Ix, and if jx : (x,OX,x)→ (X,OX), we consider

I =
∏
(jx)∗Ix, and then Hom(G, I) =

∏
Hom(G, Ix) ≃ Hom(Gx, Ix), which is exact. □

Definition 1.2. Sheaf cohomologyHi(X,−) is the right derived functor of Γ(X,−) in the category

of sheaf of abelian groups.

Remark 1.3. If F has extra structure, i.e. an OX -module, it is not a priori clear that one can

take the derived functor inside the category. For this we need to prove injective objects inside the

smaller category are acyclic.

Lemma 1.4. If I is injective OX-module, then it is flasque.

Proof. For V ⊆ U, we have 0→ i!OV → OU , and taking homs we get I(U) ↠ I(V ). □

Proposition 1.5. Flasque sheafs are acyclic.

Proof. If F is flasque, take 0 → F → I → G → 0. Then by an exercise before, we have G is also

flasque, and from the long exact sequence, we have H1(F) = 0 and Hi+1(F) ≃ Hi(G) for i ≥ 1.

Since G is also flasque, this inductively show Hi(F) = 0 for i > 0. □

Corollary 1.6. The sheaf cohomology can be taken as the derived functor inside the category of

OX-modules.

Remark 1.7. If F is a OX -module, then the cohomology Hi(X,F) are Γ(X,OX)-modules.

Theorem 1.8 (Grothendieck). If X is a Noetherian topological space, then Hi(X,F) = 0 for

i > dimX.

2. 06/02/2020

We first do some preparation for proving the theorem.

Lemma 2.1. Direct limits of flasque sheafs in a Noetherian space is flasque.

Proof. This is because for a Noetherian space, the presheaf U 7→ lim−→
α

Fα(U) is already a sheaf. □

Theorem 2.2. For a Noetherian space cohomology commutes with direct limits.
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Proof. The map lim−→
α

Hi(X,Fα) → Hi(X, lim−→
α

Fα) is natural. We know it is an isomorphism for

i = 0, and we think of both sides as a δ-functor from the category of directed systems of sheafs.

Since the right side is a derived functor, we only need to show that they are effaceable. To do this,

consider Gα by Gα(U) = {s →
⋃
t∈U (Fα)t, st ∈ Fα(t)}. This forms a directed system, and is it

flasque by the above, and this proves that both sides are effaceable. □

Proof of Serre’s Vanishing Theorem. For i : Y ⊆ X closed and j : U = X − Y ⊆ X, we denote

FY = i∗(F|Y ) and FU = i!(F|U ). Then we have the exact sequence 0→ Fu → F → FY → 0, and

the game is to consider the analogous sequence for U. We will use that Hi(Y,F|Y ) = Hi(X,FY ),

which is easy since i∗ preserves flasqueness.

If X is not irreducible, then let Y be a irreducible component of X, so that U ̸= X. So by

Noetherian induction, it suffices to prove for the case that X is irreducible.

If dimX = 0, then it has the indiscrete topology, so any sheaf is flasque.

For α a finite set of sections of F (not global sections), we consider Fα the sheaf generated by

such sections, namely Fα =
∑

(s∈F(U))∈α i∗(Z · s). Let A be the collection of such α, which form a

directed set. Then F = lim−→
α

Fα. So it suffices to prove the theorem for such Fα, and if α′ ≤ α, the

quotient Fα/Fα′ is generated by #α −#α′ sections. So by induction we only need to prove the

theorem for sheafs generated by one section.

So F fits into a sequence 0→ G → ZU → F → 0. Since X is irreducible, we can find V ⊆ U open

such that G|V = ZV
d−→ (ZU )|V (choose d to be the smallest d on all stalks). So now 0→ ZV → G

and the cokernel is supported in a set of smaller dimension. Hence we reduced the problem to the

sheafs ZU .

Going back to 0 → ZU → Z → ZY → 0, But know Z is flasque since X is irreducible, and so

the result follows from induction and from the long exact sequence. □

2.1. Cohomology of Noetherian affine scheme. For A noetherian, and I a module. For an

ideal a, we define J = Γa(I) = I[a∞].

Proposition 2.3. If I is injective, then J is injective.

Proof. We need to check that if b is an ideal and φ : b→ J, then we can lift to A. Since b is finitely

generated, there is n with anφ(b) = 0. By Krull’s theorem, we can find n′ with an
′ ∩b ⊆ anb. Then

φ factors through b→ b/(an
′ ∩ b). Since I is injective, we can extend the map to A/an

′ → I, and

then we know that this lands in J, so that J is injective. □
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Lemma 2.4. If A Noetherian and I injective, then θ : I → If is surjective for any f ∈ A.

Proof. Let bi = Ann(f i). Since A is Noetherian, this stabilizes, say at r. For x ∈ If , write

x = θ(y)/fn. We may define φ : (fn+r) → I by fn+ra 7→ fray. This is well defined since the

annihilator of fn+r is br, which kills fry. Since I is injective, this extends to A → I, and so if 1

maps to z, we have fn+rz = fry, and so θ(z) = x. □

Proposition 2.5. Let A Noetherian and I injective. then Ĩ is flasque.

Proof. Let U ⊆ X open, and let Y = suppĨ . If Y ∩ U = 0, Ĩ(U) = 0. If not, then choose Xf ⊆ U

such thatXf∩Y ̸= ∅. From the above, Γ(X, Ĩ)→ Γ(U, Ĩ)→ Γ(Xf , Ĩ) is surjective. For Z = X−Xf ,

and s ∈ Γ(U, Ĩ), we may subtract from an element of Γ(X, Ĩ) to assume s ∈ ΓZ(U, Ĩ). So it suffices

to find a lift in ΓZ(X, Ĩ). Letting J = Γf (I), it is injective, and by Noetherian induction we may

assume J̃ is flasque. And now the claim follows from noting that ΓZ(U, Ĩ) = Γ(U, J̃). □

3. 11/02/2020

Corollary 3.1. If X is Noetherian and F is quasi-coherent, then F can be embedded into a

quasi-coherent flasque sheaf.

Proof. Write X =
⋃
i∈I Ui affine Ui = SpecAi for I finite. Then F|Ui

= M̃i, and we then consider

0→ F →
⊕
j∗(Ĩi) for Mi ↪→ Ii injective modules. □

Theorem 3.2 (Serre). Let X be Noetherian. Then the following are equivalent: (i) X is affine,

(ii) Hi(X,F) = 0 for all i > 0 and quasi-coherent F , (iii) H1(X, I) = 0 for all ideal sheafs I.

Proof. That (i) =⇒ (ii) is trivial from the previous corollary. So it suffices to prove (iii) =⇒ (i).

For a closed point p ∈ X, take an affine p ∈ U. Then we have 0 → Ip∪Z → IZ → k(p) → 0.

Then by (iii) we have Γ(IZ) ↠ Γ(k(p)). Take f 7→ 1. Then Xf ⊆ U, and contains p, and so Xf is

affine. Then there is finitely many fi such that Xfi cover X. By a previous exercise, it suffices to

check that fi ∈ Γ(X,OX) generate the unit ideal. Now consider

0→ F → OnX → OX → 0

and take global sections. We need to prove H1(X,F) = 0. We do this by considering the filtration

F ∩ Oi, and then each subquotient is an ideal sheaf. □
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3.1. Cech Cohomology. For a covering Ui of X, consider Ui0,...,ip =
⋂
Uij , with the convention

that it is 0 is two are the same, and is alternating with respect to the order. We denote Cp(U,F) =⊕
F(Ui0,...,ip) the chains, with differentials given by

(dα)i0,...,ip+1
=

p+1∑
k=0

(−1)kαi0,...,îk,...,ip+1

Definition 3.3. The Cech cohomology with respect to the covering U isH∗(U,F) = H∗(C∗(U,F)).

Remark 3.4. H∗(U, ·) is not in general a δ-functor, but for any cover, Γ(X,F) = H0(U,F).

Now we sheafify the construction of Cech cohomology: Let Cp =
∏
f∗(F|Ui0,...,ip

), and consider

the same differentials.

Lemma 3.5. 0→ F → C• is exact.

Proof. This is easy to check on the level of stalks: we define k : Cpx → Cp−1
x by chosing x ∈ V ⊆ Uj0

and defining (kα)i0,...,ip−1
= αj0,i0,...,ip−1

. Then dk + kd = 1, and so it is exact. □

Corollary 3.6. If F is flasque, then Hp(U,F) = 0 for p > 0 and any cover.

Corollary 3.7. This is because Ci are also flasque.

Lemma 3.8. Let X be a topological space with a cover U. Then there is a natural functor

Hp(U,F) = Hp(X,F).

Proof. Just take a lift from 0→ F → C• to 0→ F → I•. □

Theorem 3.9. Let X be separated Noetherian (not really needed). Let Ui be an affine cover of X.

Then Hi(U,F) = Hi(X,F) for F quasi-coherent.

Proof. Let G be flasque with 0 → F → G. Then we get Hi(G/F) ≃ Hi+1(F) for i ≥ 1, and since

the covering is affine and X is separated, we have 0 → C•(F) → C•(G) → C•(G/F) → 0, and so

we also have a long exact sequence. Then comparing the two we get the isomorphism we wanted

by induction. □

4. 25/02/2020

Last time we saw that for Pn, ωPn worked for duality.
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Definition 4.1. We say ω0
X on a proper X over k is a dualizing sheaf if there is Hn(X,ω0

X)→ k

such that for all coherent sheafs F on X we have perfect pairings

Hom(F , ω0
X)×Hn(X,F)→ Hn(X,ω0

X)→ k

Proposition 4.2. If a dualizing sheaf exists, then it is unique.

Proof. If we had two ω0
X , ω

0′

X , then

Hom(ω0
X , ω

0′

X)×Hn(X,ω0′

X)→ Hn(X,ω0
X)→ k

Then the map Hn(X,ω0′)→ k corresponds to an element Φ ∈ Hom(ω0
X , ω

0′

X). In the same way we

get Φ′, and we can check their composite is the identity. □

We want to prove this exists. It exists in the proper case, but we will only prove in the projective

case. We will work to prove the following.

Theorem 4.3. If X is projective of dimension n over a field k, then ω0
X = E xtN−n(OX , ωPN ) is

a dualizing sheaf where X ↪→ PN .

Lemma 4.4. We have E xti(OX , ωPN ) = 0 for i < N − n.

Proof. For a large enough, Γ(E i(OX , ωPN )(a)) = Exti(OX , ωPN (a)), and by duality on PN , this is

HN−i(PN ,OX(−a))∗, which is 0 if i < N − dimX. □

Lemma 4.5. Let ω0
X = E xtN−n(OX , ωPN ). Then there is a functorial isomorphism Hom(F , ω0

X)
∼−→

Extr(F , ωPN ) where r = N − n.

Proof. Take an injective resolution 0→ ωPN → F•. Let I • = H om(OX ,F•). Then HomPN (F ,F i) =

HomX(F ,I i). Then E xti(F , ωPN ) = hi(HomPN (F ,F•)) = hi(HomX(F ,I •)).

Taking F = OX , from the previous lemma we have that hi(I •) is 0 for i < r. So I• = I•1 ⊕ I•2
with I•1 is exact and I•2 starts at r, and 0→ ω0

X → Ir2 → Ir+1
2 by definition of ω0

X .

Then E xtr(F , ωωPN ) = hr(HomX(F ,I •)) = hr(HomX(F , I•2 )) = HomX(F , ω0
X). □

Theorem 4.6. Let X be projective over k. Then there is a morphism Exti(F , ω0
X)

θi−→ Hn−i(X,F)∗.

The following are equivalent: (1) X is Cohen–Macaulay (resp. Sj) and equidimensional, (2) for

any F locally free, Hi(X,F(−q)) = 0 for q large, all i > 0, (resp. for 0 < i < j) (3) θi is an

isomorphism for all i > 0 (resp. i ≤ j).
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Proof. The left hand side is a universal delta functor as all F are quotients of
⊕
O(−q). Then

Exti(O(−q), ω0
X) = Hi(ωX(q)) = 0. So the θi exist.

(1) =⇒ (2): Let A = OPN ,x, an N -dimensional regular ring for a closed point x ∈ X. Then

Extj(A,OX,x) = 0 if j > N−n since depth(OX,x) = n. But then E xtjPN (F , ·) = 0 for j > N−n lo-

cally free. Then Hi(X,F(−q))∗ ≃ ExtN−i
PN (F(−q), ωPN ). For q large, this is Γ(E xtN−i(F , ωPN (q))),

and this is 0 for N − i > N − n.

(2) =⇒ (1): the same argument above backwards for F = OX gives vanishing of Ext, which

means it is Cohen–Macaulay.

(2) =⇒ (3): The same argument we used to prove the left side is universal proves that the right

side is universal.

(3) =⇒ (2): Then Hi(X,F(−q)) ≃ Extn−i(F(−q), ω0
X)∗ which is Hn−i(X,F∗ ⊗ ω0

X(q)) since

F is locally free, and this is 0 for q sufficiently large. □

Corollary 4.7. If X is normal projective of dimension ≥ 2, then for a locally sheaf F , we have

H1(X,F(−q)) = 0 for q large.

Corollary 4.8. Let X be normal projective variety over algebraically closed k, and H an ample

effective divisor on X. Then H is connected.

Proof. We may assume H is very ample. Then from 0 → O(−qH) → OX → OqH → 0 we have

for q large that H1(X,O(−qH)) = 0, and since H0(X,OX) = k, we also have H0(nH,OnH) = k,

so H is connected. □

Theorem 4.9. Let F be a locally free sheaf on a Cohen–Macaulay X. Then

Hi(X,F) ≃ Hn−1(F∗ ⊗ ω0
X))∗.

Next we want to see what ω0
X is for the smooth case.

Definition 4.10. For A a ring, and f1, . . . , fn ∈ A, we define the Koszul complex K by K1 being

a free A-module with basis e1, . . . , er, and let Kj =
∧j

K1, and differential given by

d(ei1 ∧ · · · ∧ dip) =
∑

(−1)j−1fijei1 ∧ · · · êij · · · ∧ eip .

We denote this by K•(f1, . . . , fr;A).

Theorem 4.11. If f1, . . . , fr is a regular sequence, then K•(f1, . . . , fr;A) → A/(f1, . . . , fr) → 0

is exact.
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5. 03/03/2020

5.1. Flat morphisms. We proved last time:

Proposition 5.1. f : X → Y flat between schemes of finite type over k, then dimxX − dimy Y =

dimx(Xy).

Corollary 5.2. Let f : X → Y as above and Y irreducible. Then the following are equivalent:

(1) every irreducible component of X has dimension dimY + n,

(2) for every y ∈ Y, every irreducible component of Xy has dimension n.

Proof. (1) =⇒ (2): Let Z be a irreducible component of Xy. Choose a closed point x on Z but not

on any other component. Then dimxX−dimy Y = dimxXy, and using dimxX = dimX−dim {x},

and since we have dim {x} = dim {y} as x is closed on Xy. Then n = dimX − dimY = dimxXy.

(2) =⇒ (1): Let Z be a component of X, and x ∈ Z a closed point (note y is then also a

closed point). Then dimxX = dimZ. Then dimxX − dimy Y = dimxXy = n, and so again

dimZ − dimY = n. □

Definition 5.3. A point x ∈ X is an associate point of X if mx is an associated prime of 0 ∈ OX,x

(same as mx are all zero divisors).

Proposition 5.4. If f : X → Y with Y integral regular of dimension 1, then f is flat if and only

if every associated point is mapped to the generic point of Y. In particular, if X is reduced then X

is flat if and only if every irreducible component of X dominates Y.

Proof. If suffices to consider Y = SpecOY,y. Let t ∈ my \ m2
y. If f is flat, and f(x) = y, then

OY,y → OX,x is flat. So 0 → OX,x
f#t−−→ OX,x, so f#t ∈ mx is not a zero divisor, so x is not an

associated point of X.

Conversely, we need to prove OY,y → OX,x is flat. If Y is generic, then this is trivial. So let y

be a closed point. Then OY,y is a DVR, so we need to show OX,x is torsion free OY,y-module. If

not, then f#t is a zero divisor in mx, so it is in an associated prime of 0, so this would determine

an associated point x′ which would map to y, which is a contradiction. □

Example 5.5. Let C be a nodal curve and C̃ → C its normalization. It is not flat, since

OC → f∗OC̃ is not flat, as then f∗OC̃ would be locally free since it is coherent. It has dimension

1, but at the double point we need two generators.
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Example 5.6. X → A2 the blow up at the origin. It is not flat since the dimension of the fibre

is greater in the blow up point.

Proposition 5.7. Let Y be regular of dimension 1 and p ∈ Y closed. If X ⊆closed PnY−p → Y − p

is flat, then there exist a unique X ⊆ PnY extending X with X → Y flat.

Proof. Let X be the scheme theoretic closure of X ⊆ PnY . Then the associated points are the same

as X, so they all dominate Y, and hence X → Y is flat. □

Example 5.8. Let X = Spec k[x, y, t]/(ty− x2) and Y = Spec k[t]. It is flat since the schemes are

integral and it is dominant. For t ̸= 0 we have parabolas, and for t = 0 we have a double line,

so flat families do not preserve reducedness. Taking X = Spec k[x, y, t]/(t = xy) we see it do not

preserve irreducibility.

Example 5.9. Consider the projection φ : Pn+1−(1, 0, . . . , 0)→ Pn.We have φ = φ0 if φa(x0, . . . , xn) =

(ax0, . . . , xn). If X does not contain (1, 0, . . . , 0), This gives a family X × (A1− 0) ≃X → A1− 0,

and then it extends to a family over A1.

As an example, consider the twisted curve P1 → P3. Then the X0 in this case will be set theo-

retically a nodal curve, but will have an embedded point "remembering" the projection direction.

Example 5.10. (Flat) family of (Cartier) divisors. ConsiderX → T flat for T regular of dimension

1, and a Cartier divisor D ⊆ X. We want D to give divisors on each fibre. Let D = {(SpecA, f)},

and for t ∈ T we have f ∈ A/t, and it defined a Cartier divisor if f are non-zero. This is the same

as D being flat over T.

Theorem 5.11. Let T be integral Noetherian, and X ⊆ PNT . Then X is flat over T if and only if

the Hilbert polynomials are constant on each fibre.

Proof. Take F = i∗OX , and consider the case T = SpecA for a local ring A. For any coherent

sheaf F , we prove that the following are equivalent: (1) F is flat over T, (2) H0(F(m)) is locally

free A module for m large, (3) Hilbert polynomials of Ft are the same.

The only place we need integrality is for (3) =⇒ (1),(2). □

6. 10/03/2020

Last time we discussed smooth morphisms, and that are preserved under base change.
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Definition 6.1. f : X → Y is smooth if (i) is flat, (ii) dimX ′ = dimY ′ + n for all irreducible

components, (iii) dimk(X)(ΩX/Y ⊗ k(x)) = n for all points x.

Proposition 6.2. If X f−→ Y
g−→ Z are smooth of relative dimension m,n, so is the composition,

of relative dimension m+ n.

Proof. (i) and (ii) are easy. For (iii), we use

f∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

For x ∈ X, let z be the image. Then f∗ΩY/Z ⊗ k(x) → ΩX/Z ⊗ k(x) → ΩX/Y ⊗ k(x) → 0. This

implies that ΩX/Z ⊗ k(x) is of rank at most n+m. If X ′ is a irreducible component containing x,

then we know that ΩX/Z → ΩX′/Z → 0, so ΩX′/Z ⊗ k(x) has rank ≤ n+m and if η is the generic

point of Z ′, we have rankΩX′(η)/η ≥ m + n. This implies that ΩX′/Z is a locally free module of

rank n+m. □

Corollary 6.3. Smoothness is preserved under product.

Proof. Follows from base change and composition. □

Theorem 6.4. If f : X → Y is a morphism of schemes of finite type over a field k, then f is

smooth of relative dimension n if and only if: (1) f is flat, (2) for any y ∈ Y, Xy = X ×k(y) k(y)

is equidimensional regular of dimension n.

Proof. If f is smooth, it is flat and Xy is smooth on y. This means ΩXy
is a locally free sheaf of

rank n, and so Xy is regular.

Conversely, Xy being regular implies that ΩXy
is a locally free sheaf of rank n. So ΩX/Y ⊗k(y) =

ΩXy
is locally free of rank n. This implies ΩX/Y is locally free, since it is coherent, by doing the

proof above again. □

For a morphism f : X → Y, we have Tf : Tx → Tf(x) ⊗k(y) k(x).

Proposition 6.5. Let f : X → Y a morphism of nonsingular varieties over k = k. Let n =

dimX − dimY. Then the following are equivalent: (1) f is smooth of relative dimension n, (2)

ΩX/Y is locally free of rank n, (3) for all x ∈ X, Tf is surjective.

Proof. (1) =⇒ (2) is trivial, since X,Y are integral.
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(2) =⇒ (3): We have f∗ΩY/k → ΩX/k → ΩX/Y → 0. Since X,Y are nonsingular, ΩX/k and

ΩY/k are locally free, and since by assumption ΩX/Y is also locally free, and since the ranks add

up, this is in fact exact on the left. Taking the dual after tensoring with k(x), we obtain (3).

(3) =⇒ (1): We know my/m
2
y ⊗k(y) k(x) → mx/m

2
x is injective. Choose y1, . . . , yr a regular

sequence where dimy Y = r, and then the image of them gives a regular sequence on X (since X

is regular). Then OX,x/(y1, . . . , yr) → OY,y/(y1, . . . , yr) = k(y). This is flat, and then using that

M/tM → A/tA flat =⇒ M → A flat for t not unit in A, not zerodivisor of A,M, we conclude that

f is flat. Now (3) implies the exact sequence 0→ f∗ΩY/k⊗k(x)→ ΩX/k⊗k(x)→ ΩX/Y ⊗k(x)→ 0,

and since X,Y are nonsingular we conclude that f is smooth as before. □

6.1. Smoothness on characteristic zero.

Lemma 6.6. If X → Y is dominant morphism of integral schemes of finite type over k of char-

acteristic 0, then there is U ⊆ X open nonempty with U → Y smooth.

Proof. Since the singular points on X,Y are closed, we may assume without loss of generality that

X,Y are nonsingular. Since we are in characteristic 0, K(Y ) → K(X) is a separable extension.

So ΩX/Y is a free module of rank dimX − dimY = n at the generic point. So it is locally free at

an open set of the generic point. By the proposition above, this means f is smooth. □

Remark 6.7. Having such an open set is equivalent to K(Y ) → K(X) being separable. So if

X = Y = P1
k with f the Frobenius morphism, this is not separable, so f is not smooth in any open

set.

Proposition 6.8. Let f : C → Y a morphism of finite type schemes over k of characteristic 0.

Consider Xr = {closed points with rank(Tf,x) ≤ r}. Then dim f(Xr) ≤ r.

Proof. Let Y ′ be an irreducible component of f(Xr), and X ′ an irreducible component of Xr which

dominates Y ′. Give X ′, Y ′ the reduced structure, and then since they are integral, we can find

f ′ : U ′ ⊆ X ′ with U ′ → Y ′ smooth. Then

Tx,U ′ Tx,X

Ty,Y ′ Ty,Y

Tf′,x Tf,x

where the surjectivity is since f ′ is smooth. Hence dimTy,Y ′ ≤ r. Hence dimY ′ ≤ r. □
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Corollary 6.9. Let f : X → Y a morphism between varieties over k = k of characteristic 0. Then

there exist a nonempty open V ⊆ Y such that f−1(V )→ V is smooth.

Proof. We may assume Y is nonsingular. Let r = dimY. Then dim f(Xr−1) ≤ r − 1. So there is

V ⊆ Y with f−1(U) ∩Xr−1 = ∅. Then since Y is nonsingular, this implies the Tf,x are surjective,

and hence f−1(V )→ V is smooth. □

Now let k = k of characteristic 0.

Definition 6.10. A homogeneous space is a variety X and a group variety G with an action

θ : G×X → X which is transitive.

Theorem 6.11. If X is a homogeneous space, f : Y → X and g : Z → X for nonsingular Y,Z.

Then there is U ⊆ G of dimension dimY + dimZ − dimX such that for any σ ∈ U(k) Y σ ×X Z

is smooth (where Y σ denotes Y σ−→ Y → X).

Proof. Consider h : G × Y → G × X → X. There is an open set V ⊆ X such that h−1(V ) → V

is smooth. Then h−1(V σ)→ V σ is smooth. Since X is homogeneous space, this implies that h is

smooth. Then (G × Y ) ×X Z → Z is smooth. Since Z is smooth, we have that G × Y ×X Z is

smooth over k. Now projecting this to G, and since G is nonsingular, there is U ⊆ G such that

U × Y ×X Z → U is smooth. Hence for every σ ∈ U, we get the smooth fiber Y σ ×X Z. Its

dimension is dim(G× Y ×X Z)− dimG = dimY + dimZ − dimX. □

Corollary 6.12. If X is a nonsingular projective variety has a base point free linear system b,

then there is an open set U such that any element in U is smooth.

Proof. Consider the morphism X → Pn determined by the linear system. Since Pn is homogeneous

under G = PGL(n + 1), we apply the theorem for g : H → Pn a hyperplane. So for almost all σ,

we have X ×Pn Hσ = f−1(Hσ) is smooth. □

7. 12/03/2020

7.1. Formal schemes. Mittag-Lefler condition: we have lim←−
1An = 0 if for all n we have that

Im(Am → An) is stable for m≫ 0. Also recall lim←−
2An = 0 since it is indexed is by integers.

Theorem 7.1. Let A be Noetherian, I an ideal. If Mn is an inverse system of finitely generated

A/In-modules with surjective transitions and 0 → InMm → Mm → Mn → 0 for m > n, then M̂

is finitely generated and M̂/InM̂ =Mn.
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Definition 7.2. For a Noetherian scheme X and Y a closed subscheme, we define the formal

completion along Y to be the ringed space (X̂,OX̂). The topological space is X̂ = Y, but the

structure sheaf is OX̂ = lim←−OX/I
n
Y . For a coherent sheaf F on X, we define F̂ = lim←−F/I

n
Y F a

sheaf on X̂.

Definition 7.3. A Noetherian formal scheme is a locally ringed space (X,OX) that has a finite

cover {Ui} such that each restriction is isomorphic as a locally ringed space to a completion of

a Noetherian scheme. A coherent sheaf on X is a sheaf such that on each Ui it is induces by a

coherent sheaf.

Definition 7.4. A Noetherian affine formal scheme is the completion of an affine Noetherian

scheme. We denote M∆ the coherent sheaf associated to a finitely generated module.

Proposition 7.5. Consider X = SpecA and let Y = V (I) and X = X̂. Then I = I∆ is a sheaf

of ideals in OX, and OX/I
n ≃ (A/In)∼. For M finitely generated, M∆ = M∼ ⊗OX

OX, and

M 7→M∆ is exact.

Definition 7.6. J ⊆ OX is an ideal of definition if Supp(OX/J) = X and if (X,OX/J) is a

Noetherian scheme.

Proposition 7.7. If I1, I2 are two ideals of definition, then a power of one contains the other.

Moreover, there is a unique largest ideal of definition, and it is such that (X,OX/J) is reduced.

Also, if I is an ideal of definition, so is any power.

Definition 7.8. Given φ : (X,OX)→ (X,OX/I1), we only need to prove φ(I2) is nilpotent. Since

we are in the Noetherian case, we need to prove that φ(I2) is contained in all maximal ideals of

p ∈ X. This is true since the support of I2 is full.

For the reduced ideal of definition, we note that it is unique if exist, since the proof above shows

it is maximal. But then this becomes a local question, and so we may assume we have an affine

formal scheme, and this is easy.

Theorem 7.9. If A is Noetherian and I-adically complete, then M 7→ M∆ is an equivalence of

categories between finitely generated modules and coherent sheaves. The inverse is Γ(X̂,F).

Corollary 7.10. Coherent sheaves on formal schemes form an abelian category.
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8. 31/03/2020

8.1. Formal function theorem. Consider f : X → Y a projective morphism with Y Noetherian.

For T → Y with T affine, and for F on X, we have a morphism Rif∗F ⊗OY
OT → Hi(X ×Y

T,F ⊗OY
OT ).

Theorem 8.1 (Grothendieck formal function theorem). Pick y ∈ Y, and consider Tn = OX/mny .

Let F be a coherent sheaf. Then the morphism

Rif∗F ⊗ ÔY,y → lim←−
n

Hi(Xn,Fn)

is an isomorphism.

Proof. We have X ↪→ PNY , then we may consider the pushforward of F , and so assume X = PNY .

We may also assume Y = SpecA is affine.

If F = O(n), we can compute both sides and conclude that the theorem holds.

Since F is coherent, there is a short exact sequence 0→ R→ G → F → 0 where G =
⊕
O(n).

Tensoring with A/mn, we have 0→ En → Gn → Fn → 0 for some Jn. Then we also have an exact

sequence 0→ Jn → Rn → En → 0.

Then since completion is flat, we have

Rif∗R → Rif∗G → Rif∗F → Ri+1f∗R → Ri+1f∗G

and also after completion. Similarly, taking cohomology we get

Hi(En)→ Hi(Gn)→ Hi(Fn)→ Hi+1(En+1)→ Hi+1(Gn+1)

and since they are finite modules, they satisfy Mittag–Leffler, so we can take the inverse limit.

Now we have isomorphisms in these two exact sequences for G:

R̂if∗R R̂if∗G R̂if∗F R̂i+1f∗R R̂i+1f∗G

lim←−H
i(Rn) lim←−H

i+1(Rn+1)

lim←−H
i(En) lim←−H

i(Gn) lim←−H
i(Fn) lim←−H

i+1(En) lim←−H
i+1(Gn)

∼ ∼

Claim: lim←−H
i(Rn) ≃ lim←−H

i(En).
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Then we do decreasing induction. For i ≥ N + 1, the theorem is true since both are 0. Then

together with a diagram chasing we conclude the induction. □

Proof of the claim. We will prove that for n′ ≫ n, we have Jn′ → Jn is the zero morphism.

We may prove this locally. We have Jn = ker(R/mnR → G/mnG). So Jn = (R ∩ mnG)/mnR.

By Krull’s theorem, R ∩mn
′E ⊆ mnR for n′ ≫ . □

Remark 8.2. One can relax f to be proper by using Chow’s lemma.

Remark 8.3. One can develop the cohomology theory for formal schemes. Then both sides will be

Hi(X,F).

Corollary 8.4. Let f : X → Y a projetive morphism with Y Noetherian. Let r = max{dim f−1(y) : y ∈

Y }. Then Rif∗F = 0 for F coherent and i > r.

Corollary 8.5. Assume furthermore that f∗OX = OY . Then f−1(y) is connected for any y ∈ Y.

Proof. Consider f−1(y) = X ′ ⊔X ′′. Then H0(Xn,OXn
) = H0(X ′

n,OX′
n
)⊕H0(X ′′

n ,OX′′
n
), and by

the theorem we get ÔY = lim←−H
0(X ′

n,OX′
n
) ⊕ lim←−H

0(X ′′
n ,OX′′

n
), which is not possible for local

rings. □

Corollary 8.6 (Zariski’s Main theorem). X → Y birational projective with Y Noetherian for X,Y

integral. Assume also Y is normal. Then for any y ∈ Y, f−1(y) is connected.

Proof. f∗OX is a finite OY -module, and since Y is normal and X,Y are birational, we have

f∗OX = OY . □

Theorem 8.7 (Stein factorization). For f : X → Y projective with Y Noetherian, there is Z such

that f : X f ′

−→ Z
g−→ Y and g is finite, f ′ has connected fibres.

Proof. Let Z = SpecOY
(f∗OX). Then g is finite as f∗OX is finite OY -module, and we have

f ′∗OX = OZ . □

8.2. Semicontinuity. The setting is f : X → Y projective. (Again can do for proper). F is a

coherent sheaf on X. We want to compare Rif∗F ⊗ k(y) and Hi(X,Fy). We also assume F is flat

over Y.

Assume without loss of generality that Y = SpecA.

We look the more general T i(M) := Hi(X,F ⊗AM) for an A-module M. Then T is a δ-functor

from flatness.
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Proposition 8.8. There exist a complex L• for Li finite free A-modules such that T i(M) ≃

hi(L• ⊗AM).

Proof. First, take a Cech covering of X and form the Cech complex C• = C•(U ,F). Then C• are

flat over A. Then C•(U ,F ⊗AM) = C• ⊗AM. Then T •(M) = hi(C• ⊗AM).

However, C• are not finite free A-modules.

We will prove: for any C• such that hi(C•) are finite A-modules, there is L• finite free with a

morphism g : L• → C•) such that hi(C•) ≃ hi(L•). Moreover, if C• are flat, then hi(L• ⊗AM) =

hi(C• ⊗AM).

We construct L• by decreasing induction. For i ≫ 0, we have hi(C•) = 0, so take Li = 0.

Assume Li is constructed for ≥ i + 1 such that L• → C• induce an isomorphism for hj with

j ≥ i + 2, and such that Zi+1(L•) → hi+1(C•) is surjective. hi(C•) is generated by x1, . . . , xn,

and (gi+1)−1(Bi+1(C•)) ⊆ Li+1 is finitely generated, say yr+1, . . . , ys. Let Li :=
⊕s

j=1 ej , and let

ej 7→ yj if j > r and let gi(ej) be a lift of xj for j ≤ r, and be hj for j > r such that hj 7→ f(ej)

in Ci+1.

When C• is flat, we need to prove hi(L• ⊗M) = hi(C• ⊗M). For i ≫ 0, both are 0. If M is

a free A-module, this is true. Since it commutes with direct limits, we can assume M is finitely

generated. Taking 0→ E → R→M → 0 for R finite free, we can tensor with L• and C• and take

cohomology. Here we are using that C• and L• are flat. Then by a diagram chasing we perform

descending induction. □

9. 02/04/2020

Question: in what cases do we have T i(k(y)) = T i(A)⊗ k(y)?

Proposition 9.1. The following are equivalent: (i) T i is left exact, (ii) W i := coker(Li−1 →

Li) is a projective A-module, (iii) there is a finitely generated A-module Q such that T i(M) =

Hom(Q,M).

Proof. Since W i(L• ⊗M) =W i ⊗M, we have T i(M) = ker(W i ⊗M → L• ⊗M). To see that (i)

and (ii) are equivalent, for M ′ ↪→M, consider

0 T i(M ′) W i ⊗M ′ Li ⊗M ′

0 T i(M) W i ⊗M Li ⊗M
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and so the first arrow is injective if and only if the second is, and the second is injective if and only

if W i are flat. Since it is finitely generated, this is the same as projective.

For (iii), it implies (i) trivially. Assuming (ii), the duals of L• and W • are projective. So let

Q = coker(Ľi+1 → W̌ i), and then we have

0→ Hom(Q,M)→ Hom(W̌ i,M)→ Hom(Ľi+1,M)

and using that they are projective, the last two terms are M ⊗W i →M ⊗ Li+1. □

Remark 9.2. In (iii), such Q is necessarily unique.

Proposition 9.3. There is a morphism φ : T i(A) ⊗ M → T i(A ⊗ M), and the following are

equivalent: (i) T i is right exact, (ii) φ is an isomorphism for all M, (iii) φ is surjective for all M.

Proof. φ is given by M = Hom(A,M) → Hom(T i(A), T i(M)), which is adjoint to M ⊗ T i(A) →

T i(M).

For any M, we may assume it is finitely generated, since everything commutes with direct limits.

So consider As → Ar →M → 0. Then we have

T i(A)⊗As T i(A)⊗Ar T i(A)⊗M 0

T i(As) T i(Ar) T i(M)

∼ ∼

And then it is clear that (i) =⇒ (ii).

So it remains to do (iii) =⇒ (i). For M →M ′ → 0, we have the diagram

T i(A)⊗M T i(A)⊗M ′

T i(M) T i(M ′)

and so the bottom map is also surjective. □

Theorem 9.4. T i is exact if and only if T i is right exact and T i(A) is projective.

Proof. T i being right exact implies T i(M) ≃ T i(A) ⊗M, and being left exact then means T i(A)

is flat, and hence projective. □

Now we consider the local situation by base changing to Ay.
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Proposition 9.5. If T i is left/right exact at some point y ∈ Y, then the same holds for an open

neighborhood of y ∈ Y.

Proof. T i is left exact at y if and only if W i is locally free at y, and since W i is finitely generated

A-module, this implies it is locally free in a neighborhood.

T i is right exact if and only if T i+1 is left exact, so the same follows. □

Definition 9.6. Let X be a topological space. φ : X → Z is upper semicontinuous if for each y,

there is a neighborhood U such that φ(U) ≤ φ(y). Equivalently, φ−1(n,∞) is closed.

Example 9.7. For X a Noetherian scheme and F a coherent sheaf, φ(y) = rankF ⊗k(y) is upper

semicontinuous.

Theorem 9.8. Let F be a flat sheaf on Y. Then hi(y,F) := dimk(y)H
i(Xy,Fy) is upper semi-

continuous.

Proof. hi(y,F) = dimk(y) T
i(k(y)), and we have

0→ T i(k(y))→W i ⊗ k(y)→ Li+1 ⊗ k(y)→W i+1 ⊗ k(y)→ 0.

So dimT i(k(y)) = dimW i ⊗ k(y) + dimW i+1 ⊗ k(y) − dimLi+1 ⊗ k(y). The two first terms are

upper semicontinuous and the third is constant. □

Corollary 9.9 (Gauert). Let F be a flat sheaf on Y, and Y integral. Assume hi(y,F) is constant.

Then Rif∗(F) is locally free and Rif∗(F)⊗ k(y) ≃ Hi(Xy,Fy).

Proof. By the proof above, both W i ⊗ k(y) and W i+1 ⊗ k(y) have constant dimension. Since Y is

integral andW • are finite, this impliesW i andW i+1 are locally free. So T i, T i+1 are left exact, and

so T i is exact. This implies that T i(A) = Rif∗(F) is locally free and T i(A)⊗k(y)⊗T i(A⊗k(y)). □

Example 9.10. Consider the twisted rational cubic in P3, with the degeneration to a nodal

curve. Then h0(Ct,Ot) = 1 for t ̸= 0, but h0(C0,O0) = 2, and h1(Ct,Ot) = 0 for t ̸= 1 and

h1(C0,O0) = 1.

Example 9.11. Let R = C, and consider X → Y a projective smooth family. Then hi(Xt,Ot) is

constant: we know hi(Xt,Ω
j
t ) is constant by Hodge theory, the betti cohomology (their sum) are

constants by topology, and they are all upper semicontinuous, so they must all be constant.
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Proposition 9.12. If φ : T i(A)⊗ k(y)→ T i(k(y)) is surjective, then T i is right exact at y.

Proof. We may assume A = Ay. We need to prove T i(A)⊗M → T i(M) is surjective for all M.

Assume M is a A-module with finite length over k(y). Then this follows from an induction.

Writing 0→M ′ →M →M ′′ → 0 with M ′′ of length 1, we tensor with T i(A) and we take T i, use

the induction hypothesis.

Now we use the formal function theorem: assume M is finite, and we know now that T i(A) ⊗

M/mnM ≃ T i(M/mnM), and from the formal function theorem we have T i(A)⊗M̂ ≃ T i(M)⊗Â.

Hence (T i(A)⊗M)⊗ Â = T i(M)⊗ Â, and since A is local, we have T i(A)⊗M = T i(M). □

Theorem 9.13 (Cohomology and base change). Let X → Y projective and F coherent on X and

flat over Y. There is a natural map φi(y) : Rif∗(F) ⊗ k(y) → Hi(Xy,Fy). If it is surjective, it

is an isomorphism, and then it holds for a neighborhood. Assuming φi(y) is surjective, then the

following are equivalent: (i) φi−1(y) is surjective and (ii) Rif∗(F) is locally free.

Proof. If it is surjective, T i is right exact at y, so T i(M) ≃ T i(A)⊗M, so it iso.

(i)⇐⇒ T i−1 right exact, which is T i left exact, so T i exact, so Rif∗(F) locally free=(ii). □

10. 07/04/2020

10.1. Hilbert Schemes. For a projective X/S, consider the functor Hilb : {schemes over S} →

Set by

Hilb(T ) = {closed subschemes Y ⊆ X ×S T and Y → T flat.}

This is a disjoint union based on different Hilbert polynomials, denote Hilbf when we restrict

to the ones with such f.

Theorem 10.1 (Grothendieck). Hilbf is represented by a projective scheme Hilbf .

Example 10.2. The identity on Hilbf correspond to U ⊆ Hilbf ×SX flat over Hilbf is a universal

family.

Theorem 10.3 (Universal vanishing theorem). Let X be projective over k, and E a locally free

sheaf on X. Fix a polynomial f. There is a universal d0 such that for any 0 → F → E , with

χ(F(n)) = f(n) (for n large) then for d ≥ d0 we have Hi(X,F(d)) = 0 and F(d) globally generated.

Definition 10.4. A coherent sheaf on X is m-regular if Hi(X,F(m− i)) = 0 for all i > 0.
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Theorem 10.5 (Castenuelvo–Mumford regularity theorem). If F is m-regular, then it is also

m+ 1-regular and H0(X,O(1))×H0(X,F(m))→ H0(X,F(m+ 1)) is surjective.

Corollary 10.6. (i) Hi(F(d)) = 0 for all d ≥ m− i for i > 0, (ii) F(m) is globally generated.

Proof. For (ii), we have SymdH(X,O(1))×H0(X,F(m))→ H0(X,F(m+d)) is surjective. For d≫

0, F(m+d) is globally generated, and we can use this to conclude F(m) is globally generated. □

Proof of regularity theorem. Take H a hyperplane section. For H general, we have 0→ F(−1)→

F → FH → 0. To justify why F(−1)→ F is injective, work locally.

We now prove have that FH is m-regular just from the exact sequence. We do induction on

dimension, so that the theorem holds for H. Then FH is (m + 1)-regular. From the same exact

sequence, we then conclude that F is (m+ 1)-regular.

To prove the surjection part, again by induction. □

Proof of universal vanishing. Assume first X = PN . We may assume without loss of generality

that E =
⊕
O(li). Again we do induction. Take a good H such that 0→ FH → EH . Regardless of

H, EH is a fixed sheaf on PN−1. Now χ(FH(n)) = χ(F(m))−χ(F(m− 1)), so FH also has a fixed

Hilbert polynomial. So we can apply induction. Then from all the above we get the vanishing for

i ≥ 2. To get it for i, look at the exact sequence, and then use the surjectivity part of the regularity

theorem, we can prove by descending induction that H0(F(d)) → H0(FH(d)) is surjective. So if

H1(F(d − 1)) ̸= 0, we would have dimH1(F(d)) < dimH1(F(d − 1)), and so H1(F(d)) must be

0 for d large. To prove such large does not depend on the choices, we use the Hilbert polynomial.

For the general situation, embed in OX(l), and then consider the sheaf above F on Pn, and

apply the theorem for PN .

The global generatedness now follows from the vanishing theorem since F(d) is 0 regular for

d≫ 0. □

11. 09/04/2020

11.1. Flatness.

Theorem 11.1 (Flattening stratification theorem). Let X → S projective, S Noetherian, F a

coherent sheaf. There exists a unique stratification Si such that S =
⋃
Si, each Si is locally closed

subscheme of S, such that F|Si
is flat, and for every morphism g : T → S, then G̃∗F over XT is

flat over T if and only if T factors through a finite piece of the stratification.
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Proposition 11.2. We first prove a weaker version: S is reduced Noetherian, f : X → S a finite

type, and F coherent on X. Then there exist a non-empty open subset U ⊆ S such that F|U is flat

over U.

Corollary 11.3. Applying Noetherian induction on S, there exist a finite stratification Vi of locally

closed subsets of S such that F is flat over Vi.

Proof of proposition. We may assume that S = SpecA. We may also assume X = SpecB for B a

finite A-algebra. Over the generic points, the sheaf is flat.

F over B is a finitely generated B-module, and we can find a filtration M ⊃ M1 ⊃ · · · ⊃

Mn+1 = 0 with Mi/Mi+1 ≃ B/pi. Now we find an open set SpecAf such that for all i (B/pi)f is

flat over Af . This is an exercise in commutative algebra. □

Now we want some universal vanishing theorem for fibers. From now on, we have the setup of

theorem.

Lemma 11.4. There exist d0 such that Hi(Xs,Fs(d)) = 0 for any d ≥ d0, i > 0 and s ∈ S.

Proof. Applying the corollary above, the problem reduces to the case where F is flat over S. We

can also assume S = SpecA. There is a d0 such that Hi(X,F(d)) = 0 for d ≥ d0 and i > 0. So

then 0 → H0(F(d)) → C0(F(d)) → C1(F(d)) → · · · → Ck(F(d)) → 0. But as F is flat, each

Ci(F(d)) is also flat. Then tensoring with k(s), we get

0→ H0(F(d))⊗ k(s)⊗ C0(F(d))⊗ k(d)→ C1(F(d))⊗ k(d)→ · · · → Ck(F(d))⊗ k(s)→ 0.

But Ci(F(d))⊗ k(s) = Ci(Fs(d)), and so H0(F(d))⊗ k(s) = H0(Fs(d)) and Hi(Fs(d)) = 0. □

Lemma 11.5. For each Vi = SpecAi, when S = SpecA, and Ai finitely generated over A, there

is di such that H0(XAi
,FAi

(d)) = H0(X,F(d))⊗Ai for d ≥ d0. (here we are not assume F is flat

over Vi)

Proof. For every finitely generated A-module M, we will prove H0(X,F(d)⊗M) = H0(X,F(d))⊗

M for d≫ 0 depending on M.

If M is free, this is trivially true. In general 0 → R → An → M → 0, then R ⊗ F(d) →

An ⊗F(d)→M ⊗F(d)→ 0, and for d large we still have

H0(R⊗F(d))→ H0(An ⊗F(d))→ H0(M ⊗F(d))→ 0,
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and we also have

R⊗H0(F(d))→ An ⊗H0(F(d))→M ⊗H0(F(d))→ 0

and we have a morphsism form the second one to the first. This implies the map we want is

surjective for d large. But then the same is true for R ⊗H0(F(d)) → H0(R ⊗ F(d)), which then

implies the map we want is an isomorphism.

So now we want to break Vi → S into flat and a finite morphisms, since the theorem is true

for both. If Ai is finitely generated, then A → A/ker (A→ Ai) = B is finite, and then break

B → B[x1, . . . , xn]→ Ai, since the first is flat, and the second finite. □

Proposition 11.6. For B → A, FB is flat over B if and only if g∗f∗F(d) is locally free for all

d≫ 0.

Proof. For d ≫ 0 we have g∗f∗F(d) ≃ f∗g̃
∗F(d) for d large. Then the proposition follows from

the result that a sheaf is flat if and only if the pushforward of sufficiently large twists is locally

free. □

For E a coherent sheaf on S, if E(s) is of rank e, we can find a neighborhood U of e such that

OfU
ψ−→ OeU → E → 0.

Then the locus where ψ = 0 is precisely the subscheme Ve ⊆ U where E|Ve is locally free of rank e:

if T → U is ith ET is locally free of rank e, then T → Ve → U. Then we can patch the Ve together

to get a subscheme of S.

We want to find the locus where g∗f∗F(d) are all locally free for d ≥ d0. For each connected

component we have the Hilbert polynomial of f(d0), f(d1), . . . , f(d0 + n).

We look at the locus on S where f∗(F(d0 + i)) has rank f(d0 + i) for 0 ≤ i ≤ n. This gives a

subscheme T ⊆ S such that χ(Ft(d0+i)) = H0(Ft(d0+i)) = f(d0+i). This means that the Hilbert

polynomial of Fr is indeed f. Hence F|Tred
is flat (we proved for integral, but reduced suffices).

Now we know f∗(F(d+ i)) is locally free on T for 0 ≤ i ≤ n. Looking at f∗(F(d+ n+ 1)), . . . , we

can keep shrinking the reduced structure to make each one work (in the maximal way possible).

But the Noetherianess guarantees that this stabilize, and so we can change T to something between

T and Tred to make all of them locally free.

These T for varying e and Hilbert polynomial prove the stratification theorem.
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12. 14/04/2020

Proposition 12.1. Let X → SpecA be projective, F coherent on X. Then for any finitely gener-

ated SpecAi → SpecA, there is d0 such that H0(F(d))⊗Ai = H0(FAi
(d)) for d ≥ d0.

Proof. Let S =
⊕
H0(F(d)) with S̃ ≃ F . Then S̃Ai

= (S ⊗Ai)˜= FAi
, and so the H0 agree for d

large. □

Definition 12.2. The Grassmanian Gr(m,n)/k over a field k for m < n parametrizes m-

dimensional subspaces of kn.

For m = 1, Gr(m,n) = Pn−1. On any Grassmanian, we have

0→ K → O⊕n → S → 0

where K is a rank m vector bundle, and S is a rank n −m vector bundle, the universal quotient

bundle.

It represents the functor

(T → S) 7→ {OnT → Q→ 0 for Q a locally free of rank n−m}

For a Noetherian scheme S, a projective S-scheme X and a coherent E on X, fix a Hilbert

polynomial P (d). Consider the functor

(T → S) 7→ {ET → Q→ 0 with Q flat/T with Hilbert polynomial P (d)}

where ET is on XT .

Theorem 12.3 (Grothendieck Quotient scheme). The functor above is representable by a projec-

tive scheme Quot(E , P (d)).

Example 12.4. For X = S, E = O⊕n
S and P (d) = n−m, then it is given by the Grassmanian.

Proof of theorem. Since the representable functor is unique, it suffices to consider the case S =

SpecA.

First consider the case X = PNS and E = OX(l)⊕n.

Consider 0 → K → ET → Q → 0. Then the Hilbert polynomial of K is also fixed, say P1(d).

By the universal vanishing theorem, there is a d0 not depending on Q such that Hi(K(d)) = 0 (in
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fact, Riπ∗K(d) = 0) for i > 0 and d ≥ d0. Then if π : XT → T, we have

0→ π∗K(d)→ π∗ET (d)→ π∗Q(d)→ 0.

Choose d with K globally generated also. The middle term is (OS)⊕N for N =
(
N+l+d−1

l+d

)
, and

π∗Q(d) is locally free sheaf on S (as Q is flat) with rank P1(d).

Then this data induce a morphism T → Gr(M := P (d), N) (such that π∗Q(d) is the pullback

of the quotient bundle). This parametrizes the quotient F := π∗Q(d), so we have to cut out a

subscheme that correspond to the F that come from a Q. Look at K′ := π∗π∗E(d) → E(d) →

Q′ → 0 on PNT . Now let πGr : PNGr → Gr, then the first morphism is a pullback of the composition

π∗
GrK′ → π∗

GrO⊕n →
⊕N

Gr(d).

Now apply the flat stratification for PNGr → Gr, so that we have a locally closed subscheme

Qu ⊆ Gr such that QQu is flat of Hilbert polynomial. Then the map T → Gr we construct in fact

factors through Qu. This is the representing scheme.

We know that Qu is quasi-projective, so it remains to prove it is proper. We need to prove there

is a unique flat extension, this is not too hard.

For the general case, one can pushforward fo PN after a twist and use the special case. □

13. 16/04/2020

13.1. Construction of Hilbert scheme. Consider X → S and consider the quotients OT →

Q→ 0 such that Q is flat over T. The associated Quot scheme is the Hilbert scheme.

13.2. Deformation Theory.

Theorem 13.1. The Zariski tangent space to Quot(OnX , P ) at q is isomorphic to HomOX
(K,QQ),

where q is given by the data 0→ K → OnX → Q→ 0.

Proof. We may assume that k = k(q). Then if q : Spec k → Quot, then the tangent space is

given by points Spec k[ϵ]/ϵ2 where q factor. Let A = k[ϵ]/ϵ2. Then such a map correspond to

0 → KA → OnA → QA → 0, and when reduced with Spec k → SpecA gives the original exact

sequence.

This follows from a problem in the homework. □

Theorem 13.2. If Ext1(K,Q) = 0, then Quot(OnX , P ) is nonsingular at p.
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Theorem 13.3. In any case, dimq Quot(PnX , P ) ≥ dimHomO(K,Q)− dimExt1O(K,Q).

To prove it is smooth at q, this is if and only if for any Artinian algebra morphism B → A→ 0

and O → A there is a lift to B.

14. 21/04/2020

Sketch of proof of 13.2. To prove Quot is smooth at q, it sufficed to prove that it is formally

smooth, that is SpecA→ Quot always extends to SpecB → Quot for B → A→ 0 Artinian rings.

We may assume 0→ J → B → A with m · J = 0, that is, J is a k-vector space.

Now for a surjection B → A, and since QA is flat over A, we have QB flat over B if and only if

Tor1B(QB , A) = 0. But this is ker(J ⊗ kQB → QB) = 0. But J ⊗k QB = J ·QB = QB ∩ J · TnB , so

we need to show this is 0.

In short, we do one deformation at a time (this is the m · J = 0), analyze it locally and then

glue with the spectral sequence. □

Sketch of proof of 13.3. There is a regular ring R of Oq of dimension the tangent space. Letting

0 → I → R → Oq → 0, we prove that dimk I ⊗R k ≤ dimk Ext
1(K,Q). If this is true, then I is

generated by at most dimk Ext
1(K,Q) elements by Nakayama. □

Example 14.1. If Y ⊆ X is a closed subscheme with ideal sheaf I, then if X,Y are smooth

projective over k, we have Hom(I,OY ) = H0(Y,NY/X and Ext1OX
(I,OY ) ≃ H1(Y,NY/X).

Example 14.2. If X,Y are projective, then Hom(X,Y ) is an open scheme of Hilb(Y ×X). This

is since the normal bundle of Y graph−−−→ Y ×X is g∗Tx.

Example 14.3. If C is smooth projective, then Hilbn(C) ≃ Symn(C).

Example 14.4. This is not true for smooth projective surfaces.

14.1. Mori’s bend and break theorem. We will first do some surface theory: sections 1,3,5 of

chapter 5, and then use this to prove this theorem.

15. 23/04/2020

Theorem 15.1. C a smooth projective curve over k. L a line bundle. Then H0(C,L)−H1(C,L) =

1− g + deg(C).
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Proof. Use exact sequence with skyscrapper sheaf repeatedly. □

We use this to develop intersection theory for curves on smooth projective surfaces.

Let X be a smooth projective surface over k = k. A curve C on X gives an element in Div(X).

We say curves meet transversally if they are locally defined by (f1), (f2), then f1, f2 generate

mp/m
2
p.

Lemma 15.2. If C is irreducible nonsingular and D meets C transversally, then |C ∩ D| =

degO(D)|C .

Theorem 15.3. There is a unique pairing Div(X)×Div(X)→ Z such that it is linear, commuta-

tive, if C,D are transversal then C ·D = |C ∩D|, and it only depends on the rational equivalence

class of D.

Proposition 15.4. Let C,D be two curves on X without common components. Then

C ·D =
∑

p∈C∩D
(C ·D)p

where the local intersection number is as follows: if they are defined by f1, f2 locally, then (C ·D)p :=

lenght(OX,p/(f1, f2)).

Proof. We have 0 → O(−D)|C → OC → OD∩C → 0. Then
∑
p(C ·D)p = χ(OC∩D) = χ(OC) −

χ(O(D)|C). So both sides only depend on the rational equivalence class of D. The same holds for

C. And so we can move then to reduce to the case they are transversal. □

Example 15.5. For C nonsingular on X, we have C2 = deg(O(C)|C). If the ideal sheaf of C is I,

then I/I2 = O(−C)|C , so C2 = deg((I/I2)∗) = deg(NC/X).

Proposition 15.6. If C is nonsingular of genus g, then C · (C +KX) = 2g − 2 = deg(Kc).

Theorem 15.7 (Riemann-Roch for surfaces). D a divisor on X. Then χ(X,O(D)) = 1
2D · (D −

KX) + χ(X,OX).

Proof. Write D ∼ C − E with C,E nonsingular, then 0 → O(D) → O(C) → O(C)|E → 0. So

χ(O(D)) = χ(O(C)) − χ(O(C)|E) = χ(O) + χ(O(C)|C) − χ(O(C)|E). Then applying the curve

Riemann Roch to χ(O(C)|C) = C2 + 1− gc and χ(O(C)|E) = C · E + 1− gE . □

Historically, the Riemann–Roch was χ(O) = 1
12 (K

2 + C2), where C2 is the second Chern class

of X. If X/C, then c2 = χ(X).
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Theorem 15.8 (Hodge index theorem). Let H ample on X. D not numerically equivalent to 0.

Then D ·H = 0 =⇒ D2 < 0.

Remark 15.9. Let N(X) = Div(X)/ ≡ . Then N(X) is finitely generated free Z-module, and the

theorem says that the index is (1, n− 1).

Lemma 15.10. If D2 > 0 and D ·H > 0 for H ample, then for n≫ 0 we have H0(X,O(nD)) ̸= 0,

Proof. By Riemann–Roch, χ(C,O(nD)) > 0 for n ≫ 0 if D2 > 0. Now dimH2(O(nD)) =

dimH0(O(K − nD)) and if n ≫ 0, (K − nD) · H < 0, and so H0(X,O(K − nD)) = 0. So

O(KnD) has a section.

Now if D2 > 0, choose H ′ = D + nH ample, and then H ′2 > 0, so mH ′ has a section, which is

not true.

Now assume D2 = 0. Choose E with D ·E = 0. Let E′ = (H2)E− (E ·H)H, so that E′ ·H = 0.

Then let D′ = E′ + nD, by the above case we conclude (D′)2 = 2n(D · E) + (E′)2, and we can

choose n so that (D′)2 > 0, which cannot happen by the above case. □

16. 28/04/2020

Remark 16.1. In the pset we will see that the intersection pairing induces a nondegenerate pairing

to Z. The above theorem proves that the index of the pairing is (1, n− 1).

16.1. Monoidal transformation. For X a smooth projective surface and p ∈ X, the blow up at

p π : X ′ → X is called a monoidal transformation.

Then E = π−1(p) ≃ P1, and E2 = −1. This is a (−1) curve.

Proposition 16.2. We consider the maps π∗ : Pic(X) → Pic(X ′) and Z → Pic(X ′) by n 7→ E.

Then Pic(X ′) = Pic(X)⊕ Z. Moreover (i) π∗(C) · π∗(D) = C ·D, (ii) π∗(C) · E = 0.

Corollary 16.3 (Projection formula). π∗C ·D = C · π∗(D).

Proof. We have Z→ Pic(X ′)→ Pic(X ′ \E) ≃ Pic(X \ p), and since X is smooth, this is Pic(X).

The pullback splitting this sequence. So it suffices to prove that the image of Z → Pic(X) is Z,

but this is injective since E2 = −1.

(i) Choose C ∼ C ′, D ∼ D′ with C ′, D′ with supports away from p. Then C ′·D′ = π∗(C ′)·π∗(D′).

(ii) Similarly, we may assume the support of C doesn’t contain p, and then C ·E = π∗(C) ·E = 0

since the support of π∗(C) does not meet E. □
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Theorem 16.4. KX′ = π∗K + E.

Proof. We have KX′ |X′\E ≃ KX |X\p. So KX′ = π∗KX + nE. Then KX′ · E = −n. By the

adjunction formula, (KX′ + E) · E = 2gE − 2 = −2. This implies n = 1. □

Corollary 16.5. (KX′)2 = (KX)2 − 1.

Proposition 16.6. π∗OX′ = OX and Riπ∗OX′ = 0 for any i > 0. In particular, Hi(X,OX) =

Hi(X ′,OX′) for i ≥ 0.

Proof. OX → π∗OX′ is an isomorphism outside p. Also Riπ∗OX′ = 0 outside p.

We need to understand them at p. Taking the completion, we can use the formal function

theorem for (Riπ∗OX′)p. It suffices to prove that Hi(X ′
n,OX′

n
) = 0 for i > 0. Note OX0 ≃ OP1 , and

that π−1(mnp ) = O(−nE). By the Snake lemma, the kernel OX′
n
→ OX′

n−1
is OE⊗O(−(n−1)E) =

OE(n− 1), which has trivial cohomology for i > 0.

Another consequence of the above is that H0(X,OX) ≃ kJx, yK ≃ ˆOX,p, as we wanted.

From the spectral sequence, we conclude Hi(X,OX) = Hi(X ′,OX′). □

Let X be a smooth surface, C an effective Cartier divisor, p ∈ C. Locally around p, C is given

by fp ∈ mp. Let r be such that fp ∈ mrp \mr+1
p . We denote r = µp(C) the multiplicity of p at C.

Proposition 16.7. Consider again the blow up X ′ → X. For a Cartier divisor C, we have π∗(C) =

C ′ + µp(C)E where C ′ is the birational transform of C on X ′.

Proof. Locally in p, C is given by fp, so π∗(C) is given by π∗((f)) = 0. For coordinates x, y at p,

on X ′ we have ux = ty. Writing f(x, y) = fr(x, y) + g(x, y), for u ̸= 0 we take u = 1 and then

f(ty, y) = yr(fr(t, 1) + yh). So the zero locus of f(ty, y) is precisely rE locally around E. So we

get what we wanted. □

Corollary 16.8. C ′ · E = r and pa(C ′) = pa(C)− 1
2r(r − 1) where r = µp(C).

Proof. The first statement is trivial. For the second, 2pa(C ′) − 2 = (KX′ + C ′) · C ′, and we can

compute this in terms of C. □

Proposition 16.9. Let C be an irreducible curve on X. Then there exist a finite sequence of

blowing ups Xn → Xn−1 → · · · → X0 = X such that Cn is smooth on Xn.

Proof. If C is not smooth, we blow up its singular point. By the above, this process ends. □
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Proposition 16.10. Let C ⊆ X. There is a sequence of blow ups f : Xn → X such that: Consider

the reduced structure on f−1(C). Then this is normal crossing (there are coordinates x, y ∈ mp

such that it is either x = 0 or xy = 0).

Proof. By the previous result, C ′ is smooth. Let Y = f−1(C)red = C ′ ⋃Ei.

Now consider blowing up at p ∈ Y. Let Y1 = Y ′ + E. Then we can compute that pa(Y1) =

pa(Y )− (r−1)(r−2)
2 . If r ≥ 3, then pa(Y1) < pa(Y2). So we can keep doing blow ups µp(Yn) ≤ 2 for

all p. Now consider a point with µp(Y ) = 2. If Y ′ meets E′ in two different points, they are normal

crossing. So assume E′ and Y ′ meet at the same point p′. If they are smooth, taking another

blowup makes it a triple intersection, so blowing up reduced the arithmetic genus. If they are

singular, another blow up drops the arithmetic genus. □

17. 30/04/2020

17.1. Hartshorne Chapter 5. Let X,Y projective varieties and φ : U ≃ V a birational map.

Then there is a maximal open set U ⊆ X such that φ is defined on U. Then consider Γ =

graph(φ|U ) ⊆ X × Y. Then U is the maximal locus such that p1 : Γ→ X is an isomorphism.

For p ∈ X \ U, define T (p) = p2p
−1
1 (p).

Lemma 17.1. Let φ be a birational map between X and Y. Assume X is normal. Then the locus

where φ is not defined is of codimension at least 2.

Proof. For any codimension 1 point x. the local ring is a DVR, so SpecK(X) ⊆ SpecOX,x, and

since it is projective over k, there is a lifting SpecOX,x → Y. □

Theorem 17.2 (Zariski Main Theorem). Let f be a birational map between projective X,Y with

X normal. Then T (p) is always connected, and of dim ≥ 1 for p ̸∈ U.

Proof. Consider p1 : Γ→ X. For a fixed p, p−1
1 (p) ⊆ k × Y. So p2 : p−1

1 (p) ↪→ Y. So T (p) ≃ p−1
1 (p).

By Stein factorization, we have p1 : Γ → V → X and since it is birational, V → X is finite and

birational. So V ≃ X. Hence p−1
1 (p) is always connected.

Now assume p−1
1 (p) is 0-dimensional. Then there is p ∈ U such that p−1

1 (p) is 0-dimensional by

semicontinuity. Then p−1
1 (U)→ U is projective and quasi-finite, which is just being finite. Again,

since it is also birational, p−1
1 (U) ≃ U, so it is defined on f. □
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Proposition 17.3. Let f : X ′ → X a birational morphism for X ′, X nonsingular projective sur-

faces. Consider p ∈ X which is not defined for f−1. Let X̃ = Blp(X). Then there is a lift

X ′ → Blp(X)
π−→ X.

Proof. Consider the birational map g from X ′ to X̃. Let q ∈ X ′ be a point where it is not defined,

so f(q) = p.

Consider g−1, and consider Tg−1(q). By the above, it is connected, and of positive dimension,

and it inside E = π−1(p). Hence Tg−1(q) = E. In other words, there exist an open set of E such that

g−1 is defined on such open set. Let r ∈ X̃ that maps to q. Then one can do some computations

with the blow up to finish. □

Corollary 17.4. Let f : X ′ → X a birational morphism between projective smooth surfaces. Let

n be the number of irreducible curves in the exceptional locus of f. Then f can be factored through

n blow-ups of smooth points.

Now we investigate whether any birational map between smooth projective varieties X,Y there

is a Z and maps Z → X and Z → Y that are a sequence of blow ups.

In dimension ≥ 4, we don’t know. In characteristic 0, it was proven that there is a sequence of

such Zi.

Theorem 17.5 (Strong factorization theorem for surfaces). If f from X to X ′ is a birational

map between smooth projective surfaces, then there is Y such that Y → X and Y → X ′ are both

sequences of blow-ups.

Proof. X is projective, so choose H very ample, and C ∈ |2H| general, so that X doesn’t contain

the locus where φ is defined in a neighborhood of C. Then it maps to C ′ = f(C) ⊆ X ′. Choosing

C1 ∼ C, then f(C) ∼ f(C1).

Let m = pa(C
′) − pa(C). If m = 0, then C ′ ≃ C. If m > 0, then C ′ is singular. Pick p ∈ C ′

singular, and blow it up to X̃. Let C̃ ′ ⊆ X̃ the transform. Then we saw that pa(C̃) < pa(C
′).

Then in this case m decreases. (Need to replace C to a C̃ that is general to X → X̃)

So we may assume m ≤ 0. But it is ≥ 0 since → C ′ is a normalization. So we may assume

m = 0, which then means C →≃ f(C). Now we claim f−1 is a morphism, and then we will be

done.
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So we have f a birational map from X to X ′ with C ≃ f(C). If f−1 has a fundamental

point p, then T (p) is a 1-dimensional curve in X, and as C ∈ |2H|, we have #C ∩ Z ≥ 2. So

f(p1) = f(p2) = p, whih is a contradiction with C → f(C) being an isomorphism. □

Theorem 17.6 (Was in midterm). If E is a curve inside a smooth projective surface X with

E2 = −1 and E ≃ P1, then there is a morphism X → Y such that E 7→ p for p ∈ Y smooth, and

this map is the blow-up at p.

Let X be a smooth projective surface. We look at whether there are (−1 curves and blow-down,

until there are no more (−1) curves: X = X0 → X1 → · · · .

This process has to terminate after finitely many steps, since Pic(Xi) = Pic(Xi+1)⊕Z (or that

rankN1(Xi) = rankX1(Xi+1) + 1). It’ll be an exercise that N1(X) is a free group of finite rank.

Historically, Xn is called a relative minimal surface. Then as a consequence, if Xn → Y is

birational with Y smooth projective, then Xn ≃ Y.

There are cases where Xn depend on choices. If it does not, we call it a minimal surface.

The number of (−1) curves on X could also be infinite.

18. 05/05/2020

By a rational curve, we mean a morphism P1 → X such that f(P1) is nonconstant.

Theorem 18.1 (Mori). Let X be a smooth projective variety, with −KX ample (a Fano variety).

Then X has a rational curve. In fact, for any x ∈ X we can find a rational curve passing through

x.

Lemma 18.2 (Rigidity lemma). Let f : Y → Z proper surjective. Let g : Y → X. Assume f has

connected dimension n fibers and that for a z0 ∈ Z, g(f−1(z0)) is a point in X. Then for any

z ∈ Z, g(f−1(z)) is also a point.

Proof. Consider Y → X×Z → Z. Let W ⊆ X×Z the image of Y, with p : W → Z and h : Y →W.

Then Wz := p−1(z) = gf−1(z) ⊆ X × z. So the assumption is that Wz0 is a point. So there is

U ⊆ Z such that the fiber of p−1(U) → U has fibers of dimension 0. Now let w ∈ p−1(U). Then

h−1(w) ⊆ f−1(p(w)), which has dimension n, and so h−1(w) also has dimension n. Hence by

semicontinuity again, h−1(w) ≥ n for all w ∈W, and this implies that for any w ∈W, h−1(w) has

dimension n.
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As h(f−1(p(w)) = p−1(p(w)) and f has connected fibers, this implies h(f−1(p(w))) is a single

point. □

We defined the notion of two cycles being algebraically equivalent: if we have a f : S → C

proper surjective and g : S → X, we say g∗(f−1(p)) are all algebraically equivalent.

Theorem 18.3 (Bend and Break I). If X is projective variety, C a smooth curve g0 : X → X

nonconstant, consider for a smooth curve D

C C ×D X

D

G

And assume (i) G|C×{0} = g0, (ii) G|p×D = g0(p) for some p ∈ C, (iii) G|C×{t} is different from

g0 for generic t ∈ D.

Then there is a possible g1 : C → X and a linear combination of rational curves Z =
∑
aiZi

with ai > 0 such that (g0)∗[C] is algebraically equivalent to (g1)∗[C] + [Z] and g0(p) ∈
⋃
i Zi. In

particular, p is contained in a rational curve.

Proof. Consider D the projectivization. Let C × D → W → X be the Stein factorization. (iii)

means that dimW = 2. So we have a birational map C × D → W. We want to show it is not a

morphism.

If it was a morphism, then the rigidity lemma for C×D →W and C×D → C would contradict

the fact that C ×D →W is birational.

So the birational map C × D → W has a fundamental point w ∈ W. Let X → C × D be a

common blow ups h1 : X → C ×D, h2 : X → W. Then h2(h
−1
1 (w)) is 1-dimension and a union of

rational curves.

Then letting 1 ∈ D be associated to such w proves the theorem. □

Theorem 18.4 (Bend and Break II). Let X be projective, g0 : P1 → X, and G : P1 × D → X

for D smooth curve. Assume (i) G|P1×0 = g0, (ii) G(0 × D) = g0(0), G(∞× D) = g0(∞), (iii)

G(P1 ×D) is a surface.

Then (g0)∗(P1) is algebraically equivalent to either a reducible curve or a multiple curve, so

equivalent to
∑
niZi with

∑
ni ≥ 2.

Proof. Again we have the birational map P1 × D → X, and let S be the common blow up. We

will prove the theorem by induction on the number of exceptional curves of h1 : S → P1 ×D.
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If it is 0, then we have a contradiction by the rigidity lemma. Let S′ → P1 ×D be the blow up

at one point, say with exceptional curve E. Then S′ → X is well defined along the generic point of

E. If h2 : S′ → X is a morphism, then it would suffice to prove h1(E) and h2(E′) are not constant.

If h2(E′) is constant, contract E′ to get a surface T and then we have two curves C1, C2 that are

mapped to a point, and if H is an ample curve, then (h∗2H)2 > 0, but h∗2H ·Ci = 0, and C2
i < 0, so

by the Hodge index theorem, h∗2H,C1, C2 are linearly dependent in NS(T ). But rankNS(T ) = 2

(T → D has fibers P1) and this gives a contradiction.

If h2 is not a morphism, then have to consider the cases of where the next blow up is separatedly.

If there is no fundamental point on E, then E → X is nonconstant, and we have another coming

from E′. If there is a fundamental point on E: analyze the case it is also on E′ or not separatedly.

□

19. 07/05/2020

Theorem 19.1 (Mori). Let X be smooth projective with −KX ample. Then for any x ∈ X, we

can find a rational curve C through x with −KX · C ≤ dimX + 1.

Proof. Let C be any smooth projective curve. Then for f : C → x, dimΓ(f) Hilb(C × X) ≥

χ(NC/C×X) and NC/C×X ≃ f∗TX , and by Riemann–Roch

χ(C, f∗TX) = deg(f∗TX) + (1− g(C))rank(f∗TX)

so χ(f∗TX) = −Kx · C + (1− g(C)) dimX.

So dimΓ(f) Hom(C,X) ≥ −KX · C + (1 − g(C)) dimX. But considering the homs that p is

mapped to the same point,

dimΓ(f)(Hom(C,X) ≥ −KX · C − g(C) dimX.

So we are done by Break end Bend if −KX · C − g(C) dimX ≥ 2.

If k has characteristic p, then we consider the absolute Frobenius morphism, then we get

deg(Frob) deg(f∗(−KX))− g(C) · dimX. So if K = Fp, we have the theorem.

Then we do a Lefchetz principle type of thing to prove for the case of characteristic 0: it suffices

to prove for a finitely generated Z-algebra R. If X ′/ SpecR are the same equations, then X is

the base change, and Spec k → SpecR maps to the generic point, so X ′
U is smooth and −KX′

U
is

ample for some U (This is called a spread-out-argument). Now closed points on U all have finite
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residue fields. So we can find rational curves along the closed points. Now Hilbf (XU/U) → U

is projective if we have finitely many Hilbert polynomials (so then it is finite type), hence if the

Hilbert polynomials on the closed points are bounded, then we have Hilb → U is dominant, and

hence surjective (since is projective). So we have a rational curve passing through the generic

point, which is what we needed.

So what remains to do is to prove that if we have a curve passing through x, then there is a

curve passing through x with −KX · C ≤ dimX + 1. For this we use Bend and Break II. If C

is a rational curve through x and −KX · C ≥ dimX + 2, then the deformation argument before

says that there is a family like Bend and Break II, and so we can find another rational curve with

smaller −KX · C. □

Theorem 19.2 (Mori). Let X be smooth projective and let H be ample. Suppose C is irreducible

such that −KX · C < 0. Then for any x ∈ C, there is a rational curve E such that dimX + 1 ≥

(−E ·KX) > 0 and −E·KX

E·H ≥ −C·KX

C·H .

Proof. The Frobenius trick also works, but using C now. So now we need to prove the second

condition.

For finite fields, −C·KX

C·H = −C(p)·KX

C(p)·H . And repeatedly doing bend and break, C = C ′ + Z with

−KX ·C ′ < g(C ′) dimX = g(C) ·dimX. Let a = −C ′ ·KX and b = −Z ·KX and c = −C ′ ·H and

d = −Z ·H. Then a+b
c+d = −C·KX

H·KX
=:M. For any ϵ, can find a rational curve R irreducible component

of Z with −K+X·R
H·R ≥Mϵ: if a/c < M, then b/d > M, and then R exists. Look at c when we vary

the number of Frobenius. If c is bounded above, then choosing a + b large, b/d > a+b
c+d − ϵ. If c is

not bounded, then choose a/c < M.

Now keep using break and bend II to satisfy the first condition. Then since the curves in

consideration are bounded, the M − ϵ actually suffices. □

20. 12/05/2020

Definition 20.1. Let NE(X) be the closure of the cone which is a R-convex linear combination

of effective curves in N1(X) the dual cone of NS(X) (curves modulo numerical equivalence).

Let X be projective. Then NS(X) does not contain a line, as we have am ample divisor H and

then C ·H > 0 by the following.

Lemma 20.2 (Kleiman’s criterion). H is ample on X if and only if H is positive on NE(X)\{0}.
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Proof. If H is ample, it is positive on curves, but we need to show it is positive on the limits.

Choose a basis of N1(X)⊗ R of the form H,D2, . . . , Dn with Di ample and 2H −Di ample. We

define a norm by
∑n
i=1|·Di|. If Z ∈ NE(X), then |Z| =

∑n
i=1 Z ·Di. If dimN1(X) = ρ(X), then

2ρ(X)H · Z ≥ |Z|, so H · Z > 0 if Z ̸= 0.

For the converse, we use the notion of Nef: A is nef on X if and only if A ·C ≥ 0 for any effective

curve C. We also use the Nakai–Misuhezum criterion: L is ample if and only if for any Z ⊆ X

closed, LdimZ · Z > 0.

The if H is positive as above, let D be ample. Then there is m such that mH −D is positive

on NE(X) \ 0. In particular, mH −D is nef. Then by the above theorem, a sum of nef and ample

is ample. Hence H is ample. □

Theorem 20.3 (Cone Theorem). Let X be smooth projective. (i) There are countably many

rational curves Ci with 0 < Ci · (−KX) ≤ dimX + 1 such that NE(X) = NE(X)KX ·C≥0 +∑
R≥0 · Ci, (ii) For any ample divisor H and ϵ > 0, there are finitely many curves Ci such that

Ci · (−KX) ≤ dimX + 1 and NE(X) =
∑
NE(X)(LX+ϵH)·C≥0 +

∑
finite R≥0Ci.

Proof. Let W be the closure of NE(X)KX ·C≥0 +
∑

R≥0 · Ci for ll Ci with 0 < Ci · (−KX) ≤

dimX + 1. We first prove NE(X) = W. If there is D not in W, then we can choose D to be

positive on W \ {0} but not positive on the whole NE(X). Let H be ample and µ be maximal

such that H + µD is nef. Then there is Z such that Z · (H + µD) = 0, so Z ·D < 0, Z ·KX < 0.

As Z is a limit, write it as Zk → Z and Zi =
∑
aijZij with Zij effective. For µ′ < µ, H + µ′D is

ample. Then there is Zkj such that

−Zk ·KX

Zk · (H + µ′D)
≤ −Zkj ·KX

Zkj · (H + µ′D)

and so we can apply Bend and Break so that there is a rational curve Ek such that 0 < Ek ·(−KX) ≤

dimX+1 and EK ·(−KX)
EK ·H+µ′D ≥

−ZK ·KX

ZK ·(H+µ′D) . But now EK ·(−KX)
EK ·(H+µ′D) ≤

EK ·(−KX)
EK ·H ≤M for some constant

M, as EK ∈W. Combining everything,

−ZK · (KX)

Zk · (H + µ′D)
≤M,

and letting k →∞ and µ′ → µ gives a contradiction.

One can continue to prove (ii) and prove we don’t need to take the closure. □
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