### 18.906: ALGEBRAIC TOPOLOGY II, SPRING 2020

HAYNES MILLER, NOTES BY MURILO ZANARELLA

## Contents

| 1. | $03 / 02 / 2020$ |
| :--- | ---: |
| 2. | $05 / 02 / 2020$ |
| 3. | $07 / 02 / 2020$ |
| 4. | $10 / 02 / 2020$ |
| 5. | $14 / 02 / 2020$ |
| 6. | $18 / 02 / 2020$ |
| 7. | $21 / 02 / 2020$ |
| 8. | $24 / 02 / 2020$ |
| 9. | $28 / 02 / 2020$ |
| 10. | $02 / 03 / 2020$ |
| 11. | $06 / 03 / 2020$ |
| 12. | $09 / 03 / 2020$ |
| 13. | $11 / 03 / 2020$ |
| 14. | $30 / 03 / 2020$ |
| 15. | $03 / 04 / 2020$ |
| 16. | $06 / 04 / 2020$ |
| 17. | $10 / 04 / 2020$ |
| 18. | $13 / 04 / 2020$ |
| 19. | $15 / 04 / 2020$ |
| 20. | $17 / 04 / 2020$ |

## Website

Ofice Hours: Tuesdays 3-5.

1. $03 / 02 / 2020$

Agenda:

- Basic homotopy theory - category theory and obstruction theory
- Vector bundles, principal bundles, ...
- Spectral sequences (Serre)
- Characteristic classes, applications
1.1. Some category theory. Talked about colimits.

Example 1.1. For a group $G$, consider it as a category. A group action is a functor $G \rightarrow$ Set. Then the colimit of this functor is the orbit space $G \backslash X$.

Adjoints and stuff
2. $05 / 02 / 2020$

Missed lecture (STAGE)
3. $07 / 02 / 2020$

### 3.1. Homotopy category.

Proposition 3.1. $k$-spaces are closed under quotients, closed subspaces, product with compact Hausdorff spaces and colimits. Moreover, $k\left(X \times_{\text {Top }} Y\right)=X \times_{\mathrm{kTop}} Y$.

Definition 3.2. A space is weakly Hausdorff if the image of $X \xrightarrow{\Delta} X \times_{\mathrm{kTop}} X$ is closed. Weakly Hausforff $k$-spaces are also Cartesian closed.

Example 3.3. For $f_{0}, f_{1}: X \rightarrow Y$, we say they are homotopic if there is an extension

and a map $h: I \times X \rightarrow Y$ is the same as a map $I \rightarrow Y^{X}$, and so $[X, Y]=\pi_{0}\left(Y^{X}\right)$.

Definition 3.4. A pointed category is a category with an initial and terminal object that are isomorphic.

Note that if a category was Cartesian closed and pointed, then $\mathscr{C}(X, Y)=\mathscr{C}\left(*, Y^{X}\right)=$ $\mathscr{C}\left(\emptyset, Y^{X}\right)=*$. So Top ${ }_{*}$ will not be Cartesian closed.

But we still can make sense of $Y^{X} *=\{f: X \rightarrow Y, f(*)=*\} \subseteq Y^{X}$. And now we have:

Proposition 3.5. $\left.\operatorname{Top}_{*}\left(W, Y_{*}^{X}\right) \simeq \operatorname{Top}_{*}(W \wedge X, Y)\right)$ where $W \wedge Y=(W \times Y) /(W \vee Y)$ is the smash product.

It behaves like a tensor product. For instance, we have $W \wedge S^{0}=W$, but associativity is false in $\mathrm{Top}_{*}$, but true in $\mathrm{kTop}_{*}$.

For a pair $(X, A) \in$ Top, we can make sense of $X / A \in \operatorname{Top}_{*}$, and taking $A=\emptyset$, we must have $X / \emptyset=X_{+}:=X \sqcup *$, and this functor $X \mapsto X_{+}$is left adjoint to the forgetful functor.

We think of spheres as $S^{m}=I^{m} / \partial I^{m}$, and we can compute $S^{m} \wedge S^{n}=S^{n+m}$.
Definition 3.6. The reduced suspension of $X$ is $\Sigma X:=S^{1} \wedge X$. The loop space of $X$ is $\Omega X:=X_{*}^{S^{1}}$. We note that $\Sigma^{n} X=S^{n} \wedge X$ and $\Omega^{n} X=X_{*}^{S^{n}}$.

Theorem 3.7 (Milner). If $X$ is a pointed countable $C W$ complex, the $\Omega X$ is homotopic equivalent to a pointed countable CW complex.

Definition 3.8. The category $\operatorname{HoTop}_{*}$ is where the hom sets $[\cdot, \cdot]_{*}$ are modded by pointed homotopies. We define $\pi_{n}(Y):=\left[S^{n}, Y\right]_{*}$. This is the same as $\pi_{1}\left(\Omega^{n-1} Y\right)$ if $n>0$, and so it has a group structure.

Theorem 3.9 (Today). If $X$ is simply connected finite complex and all $\pi_{*}(X)$ are known, then $X \simeq *$.

## 4. $10 / 02 / 2020$

### 4.1. Fiber bundles and Fibrations.

Definition 4.1. A fiber bundle is a continuous map $p: E \rightarrow B$ such that for any $b \in B$, there is an open neighborhood $b \in U$ such that $p^{-1}(U) \simeq p^{-1}(b) \times U$. We call $E$ the total space, $B$ the base space, $p$ the projection.

Example 4.2. A covering space is a fibre bundle with discrete fibers.
Example 4.3 (Hopf bundle). $S^{3} \subseteq \mathbb{C}^{2}$, and we have a map to $\mathbb{C P}^{1} \simeq S^{2}$ taking $v$ to $\mathbb{C} v$.
Example 4.4 (Stiefel Manifold and Grassmannian). $V_{k}\left(\mathbb{R}^{n}\right)$ is the space of ordered orthonormal $k$ frames in $\mathbb{R}^{n}$. It is a compact manifold (sits inside $\left.\left(S^{n-1}\right)^{k}\right)$. It is also $V_{k}\left(\mathbb{R}^{n}\right) \simeq \operatorname{Hom}_{\text {isometric }}\left(\mathbb{R}^{k}, \mathbb{R}^{n}\right)$. $\operatorname{Gr}_{k}\left(\mathbb{R}^{n}\right)$ is the space of $k$ dimensional linear subspaces. The map span: $V_{k}\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{Gr}_{k}\left(\mathbb{R}^{n}\right)$ is a fibre bundle.

Note the Hopf bundle is the special case $(k, n)=(1,2)$.
We will also talk about Lie groups: $O(n), S O(n), U(n), S U(n), S p(n)$.

Theorem 4.5 (Hilbert's 5th problem). If $G$ is a topological group and homeomorphic to a finite $C W$ complex, then $G$ is a compact Lie group.

If $G$ is a topological group and homotopic equivalent to a finite complex, we define $G \sim H$ generated by homomorphisms that are homotopic equivalent.

Theorem 4.6. There are uncountably many non-equivalent topological groups homotopic equivalent to $S^{3}$.

Theorem 4.7. A smooth map $p: E \rightarrow B$ is a fibre bundle provided that: (i) $p^{-1}(b)$ is compact for all b (we call this proper), (ii) The map $\mathrm{d} p$ is surjective at every point (we call this a submersion).

Corollary 4.8. For $G$ a compact Lie group, and $K \subseteq H \subseteq G$ closed subgroups. Then $G / K \rightarrow$ $G / H$ is a fiber bundle.

Note that the example $V_{k}\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{Gr}_{k}\left(\mathbb{R}^{n}\right)$ is in fact $O(n) /\left(O(n-k) \times I_{k}\right) \rightarrow O(n) /(O(n-k) \times$ $O(k))$ is an example of the above.

## 5. $14 / 02 / 2020$

Talked about fibrations last time. We denote $X \times_{Y} E=f^{*} E$ the pulback of $E \rightarrow Y$ along $f: X \rightarrow Y$.

Proposition 5.1. Suppose $f_{0} \sim f_{1}: X \rightarrow Y$, and a fibration $p: E \rightarrow Y$. Then $f_{0}^{*} E \simeq f_{1}^{*} E$.

Proof.

and then use that a path in $Y^{X}$ give the homotopy we want.
5.1. Cofibrations. For a map $i: A \rightarrow X$, when is $Y^{X} \rightarrow Y^{A}$ a fibration? The adjoint of the path-lifting diagram becomes


Doing an adjunction again, we get

and now this is the same as


Definition 5.2. $i: A \rightarrow X$ is a cofibration if it satisfies the homotopy extension property:


We proved the following lemma.
Lemma 5.3. If $i: A \rightarrow X$ is a cofibration, then for any $Y$ we have that $Y^{X} \rightarrow Y^{A}$ is a fibration.

There is a universal example: denoting $M(i)=I \times A \cup_{A} X$, the universal example is $Z=M(i)$. So $i$ is a cofibration if and only if $M(i) \rightarrow I \times X$ admits a retract.

Example 5.4. $S^{n-1} \rightarrow D^{n}$.

Example 5.5 (Preservation of cofibrations). Pushouts: for $A \rightarrow B, B \rightarrow B \cup_{A} X$ is a cofibration. Coproducts (disjoint union). Composition. Product with any space (dual to fibrations being preserved under exponentials).

Proposition 5.6. If $A \subseteq X$ is a sub $C W$ complex, then it is a cofibration.

Remark 5.7. Cofibrations are usually closed inclusions.

Proposition 5.8. If $i: A \rightarrow X$ is a cofibration and $A \sim *$, then $X \sim X / A$.

We now have the following easy proposition.

Proposition 5.9. Any map $X \rightarrow Y$ admits a factorization $X \rightarrow M(f) \rightarrow Y$ where $X \rightarrow M(f)$ is a cofibration and $M(f) \rightarrow Y$ is a homotopy equivalence, and this can be done naturally in $f$.
6. $18 / 02 / 2020$
6.1. Barratt-Poppe periodicity. Here we work with everything pointed. This changed slightly the notions of fibration and cofibration.

A cofibration becomes

and we can see that a cofibration is a (regular) cofibration that preserves basepoint.
The mapping cylinder $M(f)$ must be changed by colapsing the base points, and this becomes the mapping cone $C(f)$. Also note that $C(f)$ is the pushout of $X \rightarrow Y$ and $X \rightarrow C(X \rightarrow *)$. It is an example of a homotopy colimit. This means $Y \rightarrow C(f)$ is a cofibration. If $f$ is already a cofibration, then so is $C(X \rightarrow *) \rightarrow C(f)$. Then $C(f) \simeq C(f) / C(X \rightarrow *)=Y / X$.

Example 6.1. $\Sigma X=C(X \rightarrow *)$.

The cone also has a universal property: $X \xrightarrow{f} Y \rightarrow C(f)$ is null-homotopic with a canonical homotopy $I_{+} \wedge X \rightarrow C(f)$. It is universal among such null-homotopies. So if $[C(f), Z]_{*} \rightarrow[Y, Z]_{*} \rightarrow$ $[X, Z]_{*}$ is "exact", in the sense that things that map to a null-homotopy are exactly the image. We call $X \rightarrow Y \rightarrow C(f)$ co-exact.

We can take the "cone resolution" of any map $f: X \rightarrow Y$. Since $Y \rightarrow C(f)$ is a cofibration, $C^{2}(f)$ is homotopic to $C(f) / Y=\Sigma X$. In the same way, $C^{3}(f)$ is homotopic to $\Sigma Y$. We note that the map $\Sigma X \rightarrow \Sigma Y$ is $-\Sigma(f)$. We get

$$
X \rightarrow Y \rightarrow C(f) \rightarrow \Sigma X \rightarrow \Sigma Y \rightarrow \Sigma C(f) \rightarrow \Sigma^{2} X \rightarrow \cdots
$$

This is the homotopic exact sequence of a pair: if $A \subseteq X$, then we have $H_{*}(X, A)=\overline{H_{*}}(C(i))$ since $\overline{H_{*}}(X \cup C A)=H_{*}(X \cup C A, *)=H_{*}(X \cup C A, C A)=H_{*}\left(X \cup C_{\leq 1 / 2} A, C_{\leq 1 / 2} A\right)=H_{*}(M(i), A \times I)=$ $H_{*}(X, A)$.

$$
\text { 7. } 21 / 02 / 2020
$$

We had $\pi_{n}(X)=\left[\left(I^{n}, \partial I^{n}\right),(X, *)\right]$. We want to define $\pi_{n}(X, A, *)$.

Definition 7.1. Let $J_{n}=\partial I^{n-1} \times I \cup I^{n-1} \times\{0\}$. We define $\pi_{n}(X, A, *):=\left[\left(I^{n}, \partial I^{n}, J_{n}\right),(X, A, *)\right]$.

Note that we have a map $\partial: \pi_{n}(X, A) \rightarrow \pi_{n-1}(A)$.
This gives us a "sequence" (compositions are trivial):

$$
\cdots \rightarrow \pi_{2}(X, A) \rightarrow \pi_{1}(A) \rightarrow \pi_{1}(X) \rightarrow \pi_{1}(X, A) \rightarrow \pi_{0}(A) \rightarrow \pi_{0}(X)
$$

of pointed sets.
7.1. Homotopy fibers. A pointed fibration is


And we also have a factorization

where $T(f)=\left\{(x, w) \in X \times Y^{I}: w(1)=f(x) \in Y\right\}$. We call $F(f)=p^{-1}(*)$ the homotopy fiber: $F(f)=\left\{(x, w) \in X \times Y^{I}: w(1)=f(x) \in Y, w(0)=*\right\}$. This is the same as a pullback

or a pullback

where $P(Y)=T(* \rightarrow Y)=\{w: I \rightarrow Y: w(1)=*\}$, which is contractible.

Note that the fibre of $P(Y) \rightarrow Y$ is $\Omega Y$, which means that the fiber of the fibration $F(f) \rightarrow X$ is also $\Omega Y$

Lemma 7.2 (Was in homework). For $g: W \rightarrow E$ and $f: W \rightarrow B$ such that $p \circ g \sim f$, then there is $g^{\prime} \sim g$ with $p \circ g^{\prime}=f$.

So $p^{-1}(*) \rightarrow E \rightarrow B$ is exact, that is, $[W, F]_{*} \rightarrow[W, E]_{*} \rightarrow[W, B]_{*}$ is exact for all $W$. As before, we get a sequence

$$
Y \stackrel{f}{\leftarrow} X \leftarrow F(f) \leftarrow \Omega Y \leftarrow \Omega X \leftarrow \Omega F(f) \leftarrow \Omega^{2} Y \leftarrow \cdots
$$

and hence an exact sequence

$$
\pi_{0}(Y) \leftarrow \pi_{0}(X) \leftarrow \pi_{0}(F(f)) \leftarrow \pi_{1}(Y) \leftarrow \pi_{1}(X) \leftarrow \pi_{1}(F(f)) \leftarrow \pi_{2}(Y) \leftarrow \cdots
$$

Lemma 7.3. For a pair $i: A \hookrightarrow X$, there is an isomorphim of $\pi_{n-1}(F(i))$ with $\pi_{n}(X, A)$ making the following diagram commute

and the right vertical arrow is compatible with the maps to $\pi_{n-1}(A)$.

Corollary 7.4. $\pi_{n}(X, A)$ is a group for $n \geq 2$, and the exact sequence before is exact.

Also, $\pi_{1}(A)$ acts on $\pi_{n}(X, A)$ for all $n \geq 1$ compatibly with the long exact sequence. The action is given by connecting $J_{n}$ with a larger $J_{n}$ with the element of $\pi_{1}(A)$. So the long exact sequence is $\pi_{1}(A)$ equivariant.
8. $24 / 02 / 2020$

### 8.1. Techniques in $\mathbf{C W}$ complexes.

Definition 8.1. A relative $C W$ complex is a space $X$ with a filtration $A=X_{-1} \subseteq X_{0} \subseteq \cdots \subseteq X$ such that: (1) for all $n \geq 0$ there is a pushout square


Definition 8.2. A map $p: E \rightarrow B$ has the relative lifting property with respect to $A \rightarrow X$ if


Definition 8.3. A Serre fibration is $p: E \rightarrow B$ satisfying the homotopy lifting property for all CW complexes.

Remark 8.4. The previous fibration is called a Hurewicz fibration.

Lemma 8.5. Let $p: E \rightarrow B$ be an acyclic (weak equivalence) Serre fibration. Then every fiber is weakly contractible (there is a weak equivalence to a point).

Proof. We may assume $E, B$ are path-connected. Then from the long exact sequence we get what we want.

Proposition 8.6. $p: E \rightarrow B$. Then the following are equivalent: (1) $p$ is a Serre fibration, (2) $p$ has the homotopy lifting property for all disks, (3) p has the relative homotopy lifting with respect to $S^{n-1} \hookrightarrow D^{n}$, (4) p has the relative homotpy lifting with respect to relative $C W$ inclusions $A \hookrightarrow X$.

Proposition 8.7 (Relative straightening). Consider


Assume there is $g^{\prime} \sim g$ making the diagram commute. If $g^{\prime}$ admits a filler, then so does $g$.

Theorem 8.8 (Whitehead's little theorem). $f: X \rightarrow Y$ is a weak equivalence if and only if $[W, X] \rightarrow[W, Y]$ is a bijection for all $W C W$ complexes.

For this we will use

Theorem 8.9 (Basic lifting theorem). We have


Proof. By induction, we need to prove


In the case $B={ }^{*}$, we need to prove that if $E$ is weakly contractible, then $S^{n-1} \rightarrow E$ extends to $D^{n}$. We use the fact that if $X$ is path connected, then $\pi_{1}(X, *) \backslash \pi_{n}(X, *) \simeq\left[S^{n}, X\right]$.

For the general case, we change $g$ to $g^{\prime}$ such that $g^{\prime}=g \circ \varphi$ where $\varphi: D^{n} \rightarrow D^{n}$ is $\varphi(v)=$ $\max (0,2|v|-1) v$. By the relative straightening, it suffices to prove for $g^{\prime}$, and we replace $g$ by $g^{\prime}$.

Now $g$ is constant on $D_{1 / 2}^{n} \rightarrow B$. Let $W=I \times S^{n-1}$ be the annulus. Then we have


And now $S_{1 / 2}^{n-1} \xrightarrow{h} E \xrightarrow{p} E$ is constant, so $h\left(S_{1 / 2}^{n-1}\right)$ lands on the fiber $F=p^{-1}(g(0))$. But $F$ is weakly contractible, so $h$ extends to a map $D_{1 / 2}^{n}$. This gives the whole map from $D^{n}$.

Proof of Whitehead's little theorem. Consider $X \rightarrow T f \rightarrow Y$ the factorization into a homotopy equivalence and a Hurwevicz fibration. This implies $T f \rightarrow Y$ if a weak equivalence. Since $[W, X] \simeq$ $[W, T f]$, we may assume that our original map is a acyclic Serre fibration.

Then the surjection follows from the previous lemma on the relative CW inclusion $\emptyset \rightarrow W$, and the injectivity follows from the previous lemma on the relative CW inclusion $\partial I \times W \rightarrow I \times W$.
9. $28 / 02 / 2020$

### 9.1. Conectivity, Skeletal approximation, CW approximation.

Definition 9.1. A space $X$ is $n$-connected if $\pi_{q}(X)=0$ for $q \leq n$.

Definition 9.2. A pair $(X, A)$ is $n$-connected if: $n=0: \pi_{0}(A) \rightarrow \pi_{0}(X) ; n>0: \pi_{q}(X, A, *)=0$ for all $q \leq n$.

Definition 9.3. $f: X \rightarrow Y$ is an $n$-equivalence if: $n=0: \pi_{0}(X) \rightarrow \pi_{0}(Y) ; n>0: \pi_{q}(X) \rightarrow \pi_{q}(Y)$ is iso if $q<n$ and surjective if $q=n$.

Theorem 9.4 (Whitehead). Let $X \rightarrow Y$ be an n-equivalence. Then $[W, X] \rightarrow[W, Y]$ is iso if $\operatorname{dim} W<n$ and surjective if $\operatorname{dim} W=n$.

Theorem 9.5 (Skeletal approximation). Consider $f:(X, A) \rightarrow(Y, B)$ a relative $C W$ complex map. Then $f$ is homotopic relative to $A$ to a skeletal map. Moreover, if $f_{0}, f_{1}$ are skeletal and homotopic, then the homotopic can be deformed so as to send $X_{n}$ into $Y_{n+1}$.

Example 9.6. Consider $Y=S^{n}$ and $X=S^{q}$, with $S^{n}=* \cup D^{n}$. Then if $q<n$, it is homotopic to the identity. Hence $\pi_{q}\left(S^{n}\right)=0$ for $q<n$.

Moreover, we also have the following as a consequence of the skeletal approximation.

Theorem 9.7. $\left(X, X_{n}\right)$ is $n$-connected.

Theorem 9.8 (CW approximation). For any $Y$ there exist a $C W$ complex $X$ and a weak equivalence $X \rightarrow Y$.

Proof. We prove by induction. We will construct the $n$-equivalence $X_{n} \rightarrow Y$ inductively. For $n=0$ take a point for each path component to be $X_{0}$. Now we may assume $Y$ is path-connected. Pick generators of $\pi_{1}(Y)$ as a group, and for each one put the loop into $X_{1}$. Now we want to make the isomorphism on $\pi_{1}$, so we take generators for the kernel $\pi_{1}\left(X_{1}\right) \rightarrow \pi_{1}(Y)$. Then we have $\bigsqcup S^{1} \rightarrow X_{1}$, so we can pushout the $\bigsqcup S^{1} \rightarrow \bigsqcup D^{2}$ to get $X_{2}^{\prime} \rightarrow Y$. Then the $\pi_{1}$ agree. Now do the same to construct $X_{2}$ (making $\pi_{2}$ surjective): choose generators of $\pi_{2}(Y)$ as a $\mathbb{Z} \pi_{1}(Y)$-module and attach them. Continue this way, use skeletal approximation for the argument of putting in the relations.

Theorem 9.9 (CYC Wall). Assume $Y$ is simply connected, and $H_{n}(Y)$ is finitely generated for all $n$. Then there exist a weak equivalence $X \rightarrow Y$ with $X$ a $C W$ complex where there are $\beta_{n}+\tau_{n-1}$ $n$-cells in $X .\left(\beta_{n}\right.$ the betti numbers, and $\tau_{n}$ the number of generators in the torsion of homology).

$$
\text { 10. } 02 / 03 / 2020
$$

### 10.1. Postnikov systems.

Proposition 10.1. Suppose $(X, A)$ is a relative $C W$ complex, with all cells with dimension $>n$. Then $(X, A)$ is $n$-connected.

Theorem 10.2. Let $X$ be a space and $n \geq 0$. There exist a map $f: X \rightarrow X[n]$ such that (i) $\pi_{q}(X, *) \rightarrow \pi_{q}(X[n], f(*))$ is an isomorphism for all $* \in X$ and all $q \leq n$, (ii) $\pi_{q}(X[n], f(*))=0$ for all $q>n$, (iii) $X[n]$ is built from $X$ by attaching cells in dimension $\geq n+2$.
$X[n]$ is a Postnikov section of $X$.

Example 10.3. If $n=0$, then $X[0]=\pi_{0}(X)$ with discrete topology. If $n=1$ and $X$ is pathconnected, $X[1]$ is a $K\left(\pi_{1}(X), 1\right)$. For $n>1$, we have new spaces.

Proof of the theorem. We build it via skeletons $X=X(n) \rightarrow X(n+1) \rightarrow \cdots$ such that $\pi_{i}(X(i))=$ 0 . We construct $X(i) \rightarrow X(i+1)$ by attaching $i+2$ cells. Then $\pi_{q}(X(i)) \xrightarrow{\sim} \pi_{q}(X(i+1))$ for $q \leq i$ and $\pi_{i+2}(X(i+1), X(i)) \rightarrow \pi_{i+1}(X(i)) \rightarrow \pi_{i+1}(X(i+1)) \rightarrow 0$. So we can make $\pi_{i+1}(X(i+1))=0$ by picking generators of $\pi_{i+1}(X(i))$ attaching a $i+2$ cell. Then $X[n]=\lim _{\rightarrow i \geq n} X(i)$, and we need to justify why $\underset{\longrightarrow}{\lim } \pi_{q}(X(i))=\pi_{q}(X[n])$, which is a consequence of the next proposition.

Proposition 10.4. Let $X$ be a $C W$ complex an pick a cell structure. Then any compact subset of $X$ lie in a finite subcomplex.

Proof. $X$ is a disjoint union of cell interiors as a set. Note that any subset that meet each cell interior in a finite set is discrete. So any compact set meet finitely many interiors (otherwise choose a point in each of infinitely, and will be a subset of the compact sequence which is discrete and infinite). This also proves that a CW complex is finite if and only if is compact.

Now we prove each cell lies in a finite subcomplex, which will finish the problem. A boundary of a cell is a compact subset of dimension lesser, so it meets finitely many cells, which are all contained in a finite subcomplex by induction.

We may wonder how natural/unique $X[n]$ is.

Lemma 10.5. Let $n \geq 0$, suppose $Y$ is such that $\pi_{q}(Y, *)=0$ for all $* \in Y$ and $q>n$. Let $(X, A)$ be a relative $C W$ complex with cells in dimension $\geq n+2$. Then $[X, Y] \rightarrow[A, Y]$ is bijective.

As a consequence, for $X \rightarrow Y$ and any choice of $X[m], Y[n]$, with $m \geq n$ there is a unique diagram as follows up to homotopy.


This also implies that the $X[n]$ themselves are unique up a unique homotopy class of weakequivalences.

This also implies that $X[n+1] \rightarrow X[n]$ is unique up to homotopy. So we have a tower $X \rightarrow$ $\cdots \rightarrow X[2] \rightarrow X[1] \rightarrow X[0]$. This is called the Postnikov tower. It is sort of a dual of a skeletal filtration.
11. $06 / 03 / 2020$

From last time:

Corollary 11.1. $X$ is simply connected with $\bar{H}_{q}(X)=0$ for $q<n$. Then $X$ is $(n-1)$-connected.

Example 11.2 (Non-example). Poincaré 3-sphere. Consider the isosahedral group $I \subseteq S O(3) \subseteq$ $S U(2)$, and then lifting $I$ to $\tilde{I}$, we consider $P=S^{3} / \tilde{I}$. Then $\pi_{1}(P)=\tilde{I}$, and since $\tilde{I}^{a b}=1$, we have $H_{1}=0$ and by Poincaré duality $H_{2}=0$.
11.1. EM spaces. Our model was: for an abelian group $\pi$, take a free resolution $0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow$ $\pi \rightarrow 0$ and then construct the cell complex $M$ (Moore space) like that, and then $K(\pi, n)=\tau_{\leq n} M$.

Lemma 11.3. Let $Y$ be any space with $\pi_{q}(Y)=0$ for $q \neq n$ and $\pi_{n}(Y)=G$. Then $\left[\tau_{\leq n} M, Y\right]_{*} \xrightarrow{\pi_{n}}$ $\operatorname{Hom}(\pi, G)$ is an isomorphism.

Corollary 11.4. If $\pi=G$, then there is a weak equivalence $\tau_{\leq n} M \rightarrow Y$. If both are $C W$ complexes, then there are homotopic. So there is a functor $\mathrm{Ab} \rightarrow \operatorname{Ho}\left(C W_{*}\right)$ with a section by $\pi_{n}$.

Proof. Consider the co-exact sequence $\bigwedge S^{n} \rightarrow \bigwedge S^{n} \rightarrow M \rightarrow \bigwedge S^{n+1} \rightarrow \bigwedge S^{n+1}$ and take $[\cdot, Y]_{*}$ for a $Y$ as above. Then we get

$$
\operatorname{Hom}\left(F_{1}, G\right) \leftarrow \operatorname{Hom}\left(F_{0}, G\right) \leftarrow[M, Y]_{*} \rightarrow 0
$$

and so $[M, Y]_{*}=\operatorname{Hom}(\pi, G)$. Then $[M, Y]_{*}=\left[\tau_{\leq n} M, Y\right]_{*}$.

Remark 11.5. The Moore space cannot be made functorial.

If $n=1, \pi, G$ can be non-abelian.
11.2. Relation with cohomology. Write $K=K(\pi, n)$. Then $\bar{H}_{q}(K, G)=0$ for $q<n$. Then

$$
0 \rightarrow \operatorname{Ext}\left(H_{q-1}(K), G\right) \rightarrow H^{q}(K, G) \rightarrow \operatorname{Hom}\left(H_{q}(X), G\right) \rightarrow 0
$$

So $\bar{H}^{q}(K, G)=0$ for $q<n$, and for $q=n$ we get $H^{n}(K, G)=\operatorname{Hom}\left(H_{n}(K), G\right)$ and by Hurwewicz we have $H_{n}(K)=\pi$. Hence

$$
H^{n}(K, G) \xrightarrow{\sim} \operatorname{Hom}(\pi, G) .
$$

In the case $G=\pi$, we have a distinguished $\iota_{n} \in H^{n}(K, \pi)$ given by the identity map under the above identification. This is called the fundamental class.

If $X$ is any space, and we have $f: X \rightarrow K$, we can consider $f^{*}\left(\iota_{n}\right) \in H^{n}(X, \pi)$. This gives

$$
[X, K(\pi, n)] \rightarrow H^{n}(X, \pi)
$$

Theorem 11.6. If $X$ is a $C W$ complex, then $[X, K(\pi, n)] \xrightarrow{\sim} H^{n}(X, \pi)$ as abelian groups. i.e. $\iota_{n}$ is the universal n-dimensional cohomology class with coefficients in $\pi$.

Example 11.7. $H^{2}(X, \mathbb{Z})=\left[X, \mathbb{C} P^{\infty}\right], H^{1}(X, \mathbb{Z})=\left[X, \mathbb{R} P^{\infty}\right], H^{1}(X, \mathbb{Z})=\left[X, S^{1}\right]$.
Proof. We work with pointed maps $[X, K]_{*}$, and we need to prove $[X, K]_{*} \xrightarrow{\sim} \bar{H}^{n}(X, \pi)$. The group structure on the left is given by the following: $K(\pi, n)$ is weak equivalent to $\Omega^{2} K(\pi, n+2)$, and this gives the group structure. To see this is a group homomorphism, note that

ia the map $\Sigma X \rightarrow \Sigma X \wedge \Sigma X$ by pinching. This is the same way as the multiplication on the left is given.

Now to prove it is an isomorphism, work by induction: $\bigwedge S^{n-1} \rightarrow X_{n} \rightarrow X_{n+1}$ is co-exact, so gives a exact sequence under both $H^{*}$ and $[-, K]_{*}$. This reduces to proving it for wedges of spheres. This is true by the definition of $K(\pi, n)$.

Then we do a limiting argument if the CW complex is infinite.

Remark 11.8. (i) Could prove that $H^{n}$ is representable directly: by axiomatizing certain properties of $H^{n}$ : (Brann) representability.
(ii) We used that $K(\pi, n)$ was weak equivalent to $\Omega K(\pi, n+1)$ and that is represents the suspension isomorphism in $H^{*}$. A sequence of pointed spaces $E_{n}$ with maps $\Sigma E_{n} \rightarrow E_{n+1}$ is a "spectrum". This is a $\Omega$-spectrum if the adjoints $E_{n} \rightarrow \Omega E_{n+1}$ are weak-equivalences. With such a spectrum, we define

$$
\bar{E}^{n}: \operatorname{Ho}\left(\mathrm{Top}_{*}\right) \rightarrow \mathrm{Ab}, \quad X \mapsto\left[X, E_{n}\right]_{*}
$$

a generalized Cohomology theory (satisfy all axioms except dimension). And any generalized cohomology theory arrises in such a way.
(iii) From the Yoneda lemma, we get that natural transformations from $H^{m}(-, \pi)$ to $H^{n}(-, G)$ is the same as $H^{n}(K(\pi, m), G)$. As an example, $H^{*}\left(K\left(\mathbb{F}_{2}, n\right), \mathbb{F}_{2}\right)$ give the optimal value category for $H^{*}\left(-, \mathbb{F}_{2}\right)$ (Steenrod operations).
12. $09 / 03 / 2020$
12.1. Obstruction Theory. Recall that for a relative CW complex $(X, A)$, we define $C_{n}(X, A)=$ $H_{n}\left(X_{n}, X_{n-1}\right)$, and the boundary map is

$$
H_{n}\left(X_{n}, X_{n-1}\right) \xrightarrow{\partial} H_{n-1}\left(X_{n-1}\right) \rightarrow H_{n-1}\left(X_{n-1}, X_{n-2}\right)
$$

And fixing a set of $n$-cells $K_{n}$, we have $C_{n}(X, A) \simeq \mathbb{Z} K_{n}$.
Theorem 12.1. $H_{*}(X, A)=H_{*}\left(C_{*}(X, A)\right)$ and $H^{*}(X, A, \pi)=H^{n}\left(\operatorname{Hom}\left(C_{*}(X, A), \pi\right)\right)$.

Recall that we saw $[X, Y]=*$ if $\operatorname{dim} X \leq n$ and $Y$ is $n$-connected. A generalization of this question is when we can extend $f: A \rightarrow Y$ to $X \rightarrow Y$.

Note that we can always extend to $X_{0}$. To extend to $X_{1}$, we need endpoints of 1-cells to map to the same connected component, and sometimes we can change the choice on $X_{0}$ to allow it.

Say we want to extend $f: X_{n} \rightarrow Y$ to $X_{n+1}$. We assume that $Y$ is simple and path-connected, as then $\left[S^{n}, Y\right]=\pi_{n}(Y)$. Then we get $K_{n+1} \rightarrow \pi_{n}(Y)$ and so $C_{n+1}(X, A) \rightarrow \pi_{n}(Y)$, hence an element of $\theta_{f} \in C^{n+1}\left(X, A, \pi_{n}(Y)\right)$. This is called the obstruction cocycle. Now $f$ extends to $X_{n+1} \rightarrow Y$ if and only if $\theta_{f}=0$.

Proposition 12.2. $\theta_{f}$ is a cocycle.
Proof. We need to prove $H_{n+2}\left(X_{n+2}, X_{n+1}\right) \xrightarrow{\partial} H_{n+1}\left(X_{n+1}\right) \rightarrow H_{n+1}\left(X_{n+1}, X_{n}\right) \xrightarrow{\theta_{f}} \pi_{n}(Y)$ is zero. Now $H_{n+2}\left(X_{n+2}, X_{n+1}\right)$ actually all come from $\pi_{n+2}\left(X_{n+2}, X_{n+1}, *\right)$, and we have a corresponding sequence of maps in homotopy mapping to this. Now $\theta_{f}$ is defined by $\pi_{n+1}\left(X_{n+1}, X_{n}, *\right) \rightarrow$ $\pi_{n}\left(X_{n}\right) \xrightarrow{f_{*}} \pi_{n}(Y)$. But now along the way we have the map $\pi_{n+1}\left(X_{n+1}\right) \rightarrow \pi_{n+1}\left(X_{n+1}, X_{n}\right) \rightarrow$ $\pi_{n}\left(X_{n}\right)$, which is 0.

Theorem 12.3 (Main theorem of obstruction theory). Let $(X, A)$ be a relative $C W$ complex, $Y$ simple and path-connected. Suppose we have $f: X_{n} \rightarrow Y$. Then $\left.f\right|_{X_{n-1}}$ extends over $X_{n+1}$ if and only if $\theta_{f} \in H^{n+1}\left(X, A, \pi_{n}(Y)\right)$ is trivial.

Proof. Consider two maps $f_{0}, f_{1}: X_{n} \rightarrow Y$ that are homotopic when restricted to $X_{n-1}$. We want to relate $\theta_{f_{0}}$ and $\theta_{f_{1}}$. Our data is the same as a map $g: X_{n} \times \partial I \cup X_{n-1} \times I \rightarrow Y$.

For a CW complex $X^{\prime}$, we give $X^{\prime} \times I$ a cell structure: each $i$ cell gives $2 i$ cells and a $i+1$ cell, which we call $e \times 0, e \times 1$ and $e \times I$. This gives a map $K_{i}\left(X^{\prime}\right) \rightarrow K_{i+1}\left(X^{\prime} \times I\right)$, which extends to $C_{i}\left(X^{\prime}\right) \rightarrow C_{i+1}\left(X^{\prime} \times I\right)$.

Note that $g:(X \times I)_{n} \rightarrow Y$. Then we consider $\theta_{g} \in C^{n+1}\left(X \times I, \pi_{n}(Y)\right)$. The above map induces a map $C^{n+1}\left(X \times I, \pi_{n}(Y)\right) \rightarrow C^{n}\left(X, \pi_{n}(Y)\right)$. We call $\delta$ the image of $\theta_{g}$. That is, $\delta(e)=\theta_{g}(e \times I)$. Let's see what is $d \delta$. We have $\partial(e \times I)=(\partial e) \times I+(-1)^{n}(e \times 1-e \times 0)$. Then
$(d \delta)(e)=\delta(\partial e)=\theta_{g}(\partial e \times I)=d \theta_{g}(e \times I)-(-1)^{n}\left(\theta_{g}(e \times 1)-\theta_{g}(e \times 0)\right)=(-1)^{n+1}\left(\theta_{f_{1}}-\theta_{f_{2}}\right)(e)$.

So $d \delta=(-1)^{n+1}\left(\theta_{f_{1}}-\theta_{f_{2}}\right)$. In particular, $\left[\theta_{f_{1}}\right]=\left[\theta_{f_{2}}\right] \in H^{n+1}\left(X, A, \pi_{n}(Y)\right)$.
Moreover, using homotopy extension we can prove that for $f_{0}: X_{n} \rightarrow Y$ and $\delta \in C^{n}\left(X, A, \pi_{n}(Y)\right)$, then there is $f_{1}: X_{n} \rightarrow Y$ homotopic to $f_{0}$ on $X_{n-1}$ such that $d \delta=(-1)^{n+1}\left(\theta_{f_{1}}-\theta_{f_{0}}\right)$.

Now if $\left[\theta_{f_{0}}\right]=0$, we can use the above to produce $f_{1}: X_{n} \rightarrow Y$ with $\theta_{f_{1}}=0$, so $f_{1}$ extends to $X_{n+1}$.

Corollary 12.4. If $H^{n+1}\left(X, A, \pi_{n}(Y)\right)=0$, then any map $A \rightarrow Y$ extends to $X$. Moreover, if $H^{n}\left(X, A, \pi_{n}(Y)\right)=0$, then the extension is unique.

$$
\text { 13. } 11 / 03 / 2020
$$

### 13.1. Vector bundles.

Definition 13.1. A vector bundle over $\mathbb{R}$ is a fiber bundle $p: E \rightarrow B$ with a addition map $E \times{ }_{B} E \rightarrow E$ over $B$, together with a multiplication by scalar map $\mathbb{R} \times E \rightarrow E$ over $B$ such that: (i) the data give the fibers a finite dimensional vector space structure, (ii) the trivializations of the fiber bundle can be chosen to be fiber-wise linear isomorphisms.

We will denote the trivial bundle $B \times \mathbb{R}^{n}$ by $n \varepsilon_{B}$.

Example 13.2. Tangent bundle of a smooth manifold. $\mathbb{R} P^{n}$ has the tautological bundle, usually denoted $\lambda$, same thing about the Grassmanian.

For $(E, B),\left(E^{\prime}, B^{\prime}\right)$, can construct $\left(E \times E^{\prime}, B \times B^{\prime}\right)$. If $B=B^{\prime}$, we get $E \oplus E^{\prime}:=E \times E^{\prime} \times B \times B B$ via $B \xrightarrow{\Delta} B \times B$ the Whitney sum. Can do the same thing for the tensor product (externally and internally). Also can take $\operatorname{Hom}_{B}\left(E, E^{\prime}\right)$.

We can consider Vect $_{n}:$ Top $^{o p} \rightarrow$ Set.

Theorem 13.3. It is a homotopy functor, and is representable.

We can consider metrics, by which we mean a fiberwise inner product (always exist it there is a countable trivializing cover). In particular, any short exact sequence of vector bundles split by choosing a metric.

For $(E, B)$, consider $P_{b}=\left\{f: \mathbb{R}^{n} \xrightarrow{\sim} E_{b}\right\}$, and $P=\bigsqcup_{b} P_{b} \rightarrow B$. This admits a topology, since for $n \varepsilon_{B}$ gives $P=B \times \mathrm{GL}_{n}(\mathbb{R})$. This is called the principal bundle of $(E, B)$. It has a section exactly when $(E, B)$ is trivial. It also has an action of $\mathrm{GL}_{n}(\mathbb{R})$ that is free, and $P / \mathrm{GL}_{n}(\mathbb{R})=B$.

This is the definition of a principal $G$-bundle: $P$ with a $G$ action that is free, and $P \rightarrow P / G$ a fiber bundle. We can produce a $n$-dim vector bundle out of this by taking $\left.P \times \mathbb{R}^{n} /((\varphi g, v) \sim \varphi, g v)\right)$. This is the Borel construction. This defined a functor Bun $_{G}$ : Top $\rightarrow$ Set.

Theorem 13.4. This is a homotopy functor, and representable.
14. $30 / 03 / 2020$
14.1. Spectral sequences. Consider a fiber bundle $p: E \rightarrow B$, with homotopy fiber $F$. How can we relate $H_{*}(E), H_{*}(B), H_{*}(F)$ ?

Let us assume that $B$ is a CW complex. Then we have a filtration $S k_{n} B$, which pullback to a filtration $F_{k} E=p^{-1}\left(S k_{k} B\right)$.

This filtration induces a filtration on the singular chain complex: $F_{k} S_{*}(E)=S_{*}\left(F_{k} E\right) \subseteq S_{*}(E)$. One example of this is cellular homology when $p$ is the identity.

Today: will see some examples. Consider $p: B \times F \rightarrow B$. If we assume that our coefficients are fields, then we have the Künneth isomorphism and so $H_{*}(B \times F)=H_{*}(B) \otimes H_{*}(F)$. In the case of the Hopf fibration $S^{3} \rightarrow S^{2}$, we can see that we have a differential from $(2,0)$ to $(0,1)$. The same thing happens with the other Hopf map $S^{7} \rightarrow S^{4}$ but with a longer differential.
15. $03 / 04 / 2020$
15.1. Serre Spectral sequence. For $p: E \rightarrow B$ a fibration, let $F_{r} E=p^{-1} S k_{r}(B)$.

This gives us $E_{s, t}^{2}=H_{s}\left(B, H_{t}(F)\right)$, where $H_{t}(F)$ is a local system.

Theorem 15.1. If $E \rightarrow B$ is a Serre fibration, there is a natural first quadrant spectral sequence

$$
E_{s, t}^{2}=H_{s}\left(B, H_{t}\left(p^{-1}(*)\right) \Longrightarrow H_{s+t}(E)\right.
$$

Example 15.2. Let's compute $H_{*}\left(\Omega S^{n}\right)$ for $n>1$. We have the fibration $P S^{n} \rightarrow S^{n}$ with fiber $\Omega S^{n}$. Then $E_{s, t}^{2}=H_{s}\left(S^{n}\right) \otimes H_{t}\left(\Omega S^{n}\right)$. Since we know the answer, we can compute $H_{k}\left(\Omega S^{n}\right)$ to be $\mathbb{Z}$ when $n-1 \mid k \geq 0$, and 0 otherwise.
16. $06 / 04 / 2020$

### 16.1. Exact couples.

Definition 16.1. An exact couple is a diagram of abelian groups

which is exact.

In this situation, $d: E \rightarrow A \rightarrow E$ is a differential.
The derived couple is another exact couple $A^{\prime}, E^{\prime}$ with $A^{\prime}=\operatorname{im} A$, and $E^{\prime}=H(E, d) . i^{\prime}$ is just i. $j^{\prime}$ is $j^{\prime}(i a)=j(a)$, which is well defined. For $k^{\prime}$, let $e \in E$ be a cycle, so $j k e=0$, then $k e \in A^{\prime}$, so define $k^{\prime}(e)=k e$.

We may do this repeatedly, getting $A^{(r)}$ and $E^{(r)}$.
We give $\mathbb{Z} \times \mathbb{Z}$ grading to an exact couple. We say it is of type $r$ if $\operatorname{deg} i=(1,-1), \operatorname{deg} j=(0,0)$ and $\operatorname{deg} k=(-r, r-1)$. Then $\operatorname{deg} d=(-r, r-1)$.

For a filtered complex $F_{\bullet} C_{\bullet}$, we get an exact couple $A_{s, t}^{\prime}=H_{s+t}\left(F_{s} C_{\bullet}\right)$ and $E_{s, t}^{\prime}=H_{s+t}\left(\mathrm{gr}_{s} C_{\bullet}\right)$.
Given a type 1 exact couple $A^{\prime}, E^{\prime}$, write $A^{r}:=\left(A^{\prime}\right)^{(r-1)}$ and $E^{r}:=\left(E^{\prime}\right)^{(r-1)}$. We can put the exact sequences side by side with the $s$ degree, and the differential show up

and now a diagram chasing from $x \in E_{s}^{\prime}$ with $d^{1} x=0$, we can naturally find $x_{1} \in A_{s-2}^{\prime}$, and we define $d^{2}(x):=j\left(x_{1}\right)$. If $d^{2}(x)=0$, then can do the same thing to give $d^{3}(x)$. If all the differentials are 0 , we would hope that $x$ lifts to $A_{s}^{\prime}$.

Example 16.2. Postnikov tower: $Y$ pointed path connected, have the tower of fibrations $Y \rightarrow$ $\cdots \rightarrow Y[3] \rightarrow Y[2] \rightarrow Y[1]$, with homotopy fibers being $K\left(\pi_{k}(Y), k\right)$. Applying $\pi_{*}$ give us long
exact sequences. We may also apply $\pi_{*}\left((-)_{*}^{X}\right)$ for some pointed space $X$ (still a tower of fibrations). $E^{1}$ will be the new fibers $K\left(\pi_{k}(Y), k\right)_{*}^{X}$, whose $\pi_{n}$ is:

$$
\pi_{n}\left(K\left(\pi_{s}(Y), s\right)_{*}^{X}\right)=\left[S^{n} \wedge X, K\left(\pi_{s}(Y), s\right)\right]_{*}=\left[X, K\left(\pi_{s}(Y), s-n\right)\right]_{*}=\bar{H}^{s-n}\left(X, \pi_{s}(Y)\right)
$$

Have to be careful: convergence issues, some of $\pi_{n}$ are not abelian. This works stably.

Example 16.3 (Atiyah-Hirzebruck-Serre). $R_{*}(-)$ a generalized homotopy theory. Exact sequence of pairs give us an exact couple so that we have a spectral sequence of a fibration $E_{s, t}^{2}=$ $H_{s}\left(B, R_{t}\left(p^{-1}(-)\right)\right) \Longrightarrow R_{s+t}(E)$. Though now we do not necessarily have a filtration, as we don't have chain complexes. If $p$ is trivial: $H_{s}\left(B, R_{t}(*)\right) \Longrightarrow R_{s+t}(B)$.
17. $10 / 04 / 2020$
17.1. Hurewicz theorem. Suppose $E \rightarrow B$ is a simple system (i.e. the local system is trivial). Assume $\bar{H}_{s}(B)=\bar{H}_{t}(F)=0$ for $s<p, t<q$. For a while, all differentials are transgressions:

$$
E_{s, 0}^{\infty} \rightarrow H_{r}(B) \xrightarrow{d^{s}} H_{s-1}(F) \rightarrow E_{0, s-1}^{\infty} \rightarrow 0
$$

for $s<p+q$ and

$$
0 \rightarrow E_{0, n}^{\infty} \rightarrow H_{n}(E) \rightarrow E_{n, 0}^{\infty} .
$$

for $n<p+q$.
We can put these together

$$
H_{p+q-1}(F) \rightarrow H_{p+q-1}(E) \rightarrow H_{p+q-1}(B) \rightarrow H_{p+q-2}(F) \rightarrow \cdots
$$

It looks like the homotopy sequence! And in fact we have a map from the homotopy one to this one by the definition of the transgression.

Corollary 17.1. Let $X$ be $(n-1)$-connected for $n \geq 2$. Then $\bar{H}_{i}(X) \xrightarrow{\sim} \bar{H}_{i-1}(\Omega X)$ for $i \leq 2 n-2$.

Theorem 17.2 (Hurewicz). If $X$ is $(n-1)$-connected for $n \geq 2, \pi_{n}(X) \simeq H_{n}(X, \mathbb{Z})$.

Proof. Induction on $n$.
17.2. Relativity. For a pair of spaces $(B, A)$, say $B$ path-connected, and local systems trivial on


Then we get

$$
H_{s}\left(B, A ; H_{t}(F)\right) \Longrightarrow H_{s+t}\left(E,\left.E\right|_{A}\right)
$$

Also can consider making it relative along the fiber than the base.
Theorem 17.3. Assume $A \subseteq X$ both are simply connected and $n \geq 3$. Assume $\pi_{i}(X, A)=0$ for $1 \leq i<n$. Then $H_{i}(X, A)=0$ for $i<n$ and $h: \pi_{n}(X, A) \simeq H_{n}(X, A)$.

Proof. First check that $H_{2}(X, A)=0$ by comparing the Hurewicz maps. Using the regular Hurewicz theorem.

Now do induction on $n$. If $F$ is the homotopy fiber of $A \rightarrow X$, we have $\pi_{q}(X, A)=\pi_{q-1}(F)$. Now study the Serre spectral sequence

$$
E_{s, t}^{2}=H_{s}\left(X, A, H_{t}(\Omega X)\right) \Longrightarrow H_{s+t}(P X, F) \simeq \pi_{s+t-1}(F) \simeq \pi_{s+t}(X, A)
$$

By the universal coefficient theorem, we have $E_{s, t}^{2}=0$ for $s<n$.
This means it is an isomorphism in degree $n: H_{n}\left(X, A, H_{0}(\Omega X)\right) \simeq \pi_{n}(X, A)$ as we wanted.
18. $13 / 04 / 2020$

Note about last class: relative Hurewicz implies Whitehead:

Theorem 18.1 (Whitehead). Any weak equivalence induces homotopy in homology.
If $X$ and $Y$ are simply connected (or even simple), then the converse is true: isomorphism in homology implies weak equivalence.

Combined with Whitedead's little theorem, this gives a homotopy equivalence is $X, Y$ are $C W$ complexes.
18.1. Cohomology Serre Spectral Sequence. To filter the cohomology, we filter them by kernels $F_{-s} S^{k}(X)=\operatorname{ker}\left(S^{*}(X) \rightarrow S^{*}\left(F_{s-1} X\right)\right.$. Define $F^{s}=F_{-s}$.

This gives a spectral sequence $d_{r}: E_{r}^{s, t} \rightarrow E_{r}^{s+r, t-r+1}$, with $E_{0}^{s, t}=\mathrm{gr}^{s} C^{s+t}$.
We also have a first-quadrant condition: $F^{0} C^{\bullet}=C^{\bullet}, \bigcap F^{s} C^{\bullet}=0$ and $H^{n}\left(\mathrm{gr}^{s} C^{\bullet}\right)=0$ for $n<s$. In this case, $\operatorname{gr}^{s} H^{s+t}\left(C^{\bullet}\right)=E_{\infty}^{s, t}$.

Theorem 18.2 (Serre spectral sequence). $E_{2}^{s, t}=H^{s}\left(B, H^{t}\left(p^{-1}(-)\right)\right) \Longrightarrow H^{s+t}(E)$.
18.2. Products. Now let $R$ be a commutative ring of coefficients.

Then we have $H^{*}\left(p^{-1}(-)\right): \pi_{1}(B)^{o p} \rightarrow\{$ commutative graded $R$ algebras $\}$. Then $H^{*}\left(B, H^{t}\left(p^{-1}(-)\right)\right)$ is also a bigraded commutative $R$-algebra: $y x=(-1)^{|x||y|} x y$ where $|x|$ is the total degree of $x$.

Then the cohomology spectral sequence is multiplicative, in the following sense (more natural using Dress's construction of spectral sequences):

- Each $E_{r}^{s, t}$ is commutative bigraded algebra.
- $d_{r}(x, y)=\left(d_{r} x\right) y+(-1)^{|x|} x d_{r} y$.
- $E_{r+1}=H\left(E_{r}\right)$ as algebras.
- $F^{s} H^{\bullet}(E) \cdot F^{s^{\prime}} H^{\bullet}(E) \subseteq F^{s+s^{\prime}} H^{\bullet}(E)$ and $\mathrm{gr}^{\bullet}\left(H^{\bullet}(E)\right) \simeq E_{\infty}^{\bullet \bullet}$ as algebras.
- $E_{2}^{\bullet \bullet}=H^{\bullet}\left(B, H^{\bullet}\left(p^{-1}(-)\right)\right)$ as algebras.

What happens in the Gysin sequence: $E \rightarrow B$ fibration by homology spheres, oriented: $H^{*}\left(p^{-1}(-), R\right) \simeq$ $H^{*}\left(S^{n-1}, R\right)$.

$$
\cdots \rightarrow H^{s-n}(B) \rightarrow H^{s}(B) \rightarrow H^{s}(E) \rightarrow H^{s-n+1}(B) \rightarrow \cdots
$$

Consider $\sigma \in H^{0}\left(B, H^{n-1}\left(p^{-1}(-)\right)\right.$ such that $\left\langle\operatorname{res}_{b}(\sigma),\left[p^{-1}(-)\right]\right\rangle=1$ (canonical given the orientation). Let $e=d_{n} \sigma \in H^{n}(B)$. This is called the Euler class. It is a characteristic class: it is natural with respect to pullbacks.

Now the map $H^{s-n}(B) \rightarrow H^{s}(B)$ is given by $x \mapsto d_{n}(x \cdot \sigma)=\left(d_{n} \cdot x\right) \sigma \pm x \cdot d_{n} \sigma= \pm e \cdot x$.
If a spherical bundle $E \rightarrow B$ has a section, then $e=0$.

Theorem 18.3. Considering the tanget bundle $\tau: T M \rightarrow M$ for a R-oriented closed manifold $M$, then $\left\langle e_{\tau},[M]\right\rangle=\chi(M)$.

The third map is like integrating over the fibers.

Example 18.4. $H^{*}\left(\Omega S^{n}\right)$ as a ring. Let $x$ be a generator of $H^{n-1}\left(\Omega S^{n}\right)$ with $d_{n} x=\iota_{n}$.
Then if $n$ is odd we have $d_{n}\left(x^{2}\right)=2 x \iota_{n}$, but $d_{n}$ is an isomorphism, so there is $\gamma_{2}$ such that $2 \gamma_{s}=x^{2}$. The same thing says that there is $\gamma_{n}$ such that $n!\gamma_{n}=x^{n}$. So $H^{*}\left(\Omega S^{n}\right)$ is a divided power algebra $\Gamma[x]$.

If $n$ is even, then $x^{2}=0$, so choose $y$ such that $d_{n} y=\iota_{n} x$. Then $H^{*}\left(\Omega S^{n}\right)=R[x] / x^{2} \otimes \Gamma[y]$.
19.1. Serre classes. Let $X$ be a simply connected space, and $\bar{H}_{*}(X, \mathbb{Q})=0$. Then is $\pi_{*}(X) \otimes \mathbb{Q}=$ 0 ?

If $\bar{H}_{*}(X)$ is $p$-torsion, is $\pi_{*}(X)$ also $p$ torsion?
If $H_{*}(X)$ are finitely generated, are $\pi_{*}(X)$ also finitely generated?
How about in-a-range versions?
Idea: Set up a class of "negligable" groups.

Definition 19.1. A class $\underline{C}$ of abelian groups is a Serre class if $0 \in \underline{C}$, and if $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, then $B \in \underline{C} \Longleftrightarrow A, C \in \underline{C}$.

It is automatically closed under isomorphism, subgroups and quotients.

Proposition 19.2. If $A \rightarrow B \rightarrow C$ is exact and $A, C \in \underline{C}$, then $B \in \underline{C}$.

Example 19.3. Trivial groups, finite abelian groups, finitely generated abelian groups, torsion abelian groups, $p$-torsion abelian groups, $p$-divisible abelian groups.

Intersection of Serre classes is a Serre class.

We work modulo a Serre class. For example, $f: A \rightarrow B$ is an isomorphism modulo $C_{t o r}$ if and only if $f: A \otimes \mathbb{Q} \xrightarrow{\sim} B \otimes \mathbb{Q}$.

Lemma 19.4. Let $\underline{C}$ be a Serre class. Then monomorphisms, epimorphisms and isomorphisms mod $\underline{C}$ are closed under composition.

Moreover, isomorphisms modulo $C$ satisfy the two out of three property.

Proof. Use the exact sequence of composition.

Suppose $C_{\bullet}$ is a chain complex. If $C_{\bullet}$ is in $\underline{C}$, then so is $H_{\bullet}\left(C_{\bullet}\right)$.
If $F_{\bullet} A$ is a filtered abelian group and the filtration is finite, then if $\operatorname{gr}_{s} A$ is in $\underline{C}$, then so is $A$.
So if we have a first quadrant spectral sequence which is eventually $0 \bmod \underline{C}$, then the converging object is also.

Definition 19.5. A Serre class $\underline{C}$ is a Serre ring if $A, B \in \underline{C}$ implies $A \otimes B, \operatorname{Tor}(A, B) \in \underline{C}$.
It is a Serre ideal if the same conclusion holds when only $A$ or $B$ is in $\underline{C}$.

Theorem 19.6 (Mod $\underline{C}$ Vietoris-Bagle). Let $p: E \rightarrow B$ is a fibration with $B$ path-connected with path-connected fiber $F$. Assume $\pi_{1}(B)$ acts trivially on $H_{\bullet}(F)$. Let $\underline{C}$ be a Serre ideal, and $H_{t}(F) \in \underline{C}$ for $t>0$. Then $p_{*}: H_{\bullet}(E) \rightarrow H_{\bullet}(B)$ is an isomorphism $\bmod \underline{C}$.

Proof. Follows from the Serre spectral sequence since $E_{s, t}^{2} \in \underline{C}$ for $t>0$. So $E_{s, t}^{\infty}=0$ for $t>0$. So the edge homomorphisms (the maps we want) are isomorphisms mod $\underline{C}$.

Theorem 19.7. Let $p: E \rightarrow B$ is a fibration, $B \pi_{1}(B)$ acts trivially as before and $F$ path connected. Let $\underline{C}$ be a Serre ring. Assume that $H_{s}(B) \in \underline{C}$ for $0<s<n$ and $H_{t}(F) \in \underline{C}$ for $0<t<n-1$. Then $p_{*}: H_{i}(E, F) \rightarrow H_{i}(B, *)=\bar{H}_{i}(B, *)$ is a mod $\underline{C}$ isomorphism for $i \leq n$.

Proof. Use the relative Serre spectral sequence

$$
E_{s, t}^{2}=\bar{H}_{s}\left(B, H_{t}(F)\right) \Longrightarrow H_{s+t}(E, F)
$$

Theorem $19.8(\operatorname{Mod} \underline{C}$ Hurewicz theorem). Let $\underline{C}$ be a Serre ring such that

$$
A \in \underline{C} \Longrightarrow H_{q}(K(A, 1)) \in \underline{C} \text { for } q \geq 1
$$

Let $X$ be simply connected, $n \geq 2$. Then we have

$$
\pi_{q}(X) \in \underline{C} \text { for } q<n \Longleftrightarrow \bar{H}_{q}(X) \in \underline{C} \text { for } q<n
$$

and in such case, $\pi_{n}(X) \rightarrow H_{n}(X)$ is an isomorphism mod $\underline{C}$.

Remark 19.9. It is not hard to prove that the above extra condition is true, for instance, for $\underline{C}_{t o r}$ : it boils down to computing the homology of $K(\mathbb{Z} / n, 1)$. This can be done by considering $B \mathbb{Z} / n \rightarrow B S^{1}$ with fiber $S^{1} /(\mathbb{Z} / n) \simeq S^{1}$.
20. $17 / 04 / 2020$

Consider the Serre class $C_{p}$ the torsion abelian subgroups without $p$-torsion.
Then $A \in C_{p}$ if and only if $A \otimes \mathbb{Z}_{(p)}=0$.

Lemma 20.1. Let $X, Y$ such that $H_{*}\left(-, \mathbb{Z}_{(p)}\right)$ is of finite type, and $X \rightarrow Y$ an isomorphism on $H_{*}\left(-, \mathbb{F}_{p}\right)$. Then $H_{*}(X) \rightarrow H_{*}(Y)$ is an isomorphism modulo $C_{p}$.

Definition 20.2. A Serre class $C$ is acyclic if $A \in C$ implies $H_{q}(K(A, 1)) \in C$ for all $q \geq 1$.
Theorem 20.3. $C$ an acyclic Serre ring, $X$ simply connected, $n \geq 2$. Then $\pi_{q}(X) \in C$ for $q<n$ if and only if $\bar{H}_{q}(X) \in C$ for $q<n$. In such case, $\pi_{n}(X) \rightarrow H_{n}(X)$ is an isomorphism mod $C$.

Proof. As before, by induction


The difference is that for $\Omega X$ it is not easy to apply the induction hypothesis.
We get rid of $\pi_{2}(X)$ by considering $Y=X[3, \infty) \rightarrow X$ with homotopy fiber $K:=K\left(\pi_{2}(X), 1\right)$. By acyclicity, $H_{i}(Y, *) \rightarrow H_{i}(Y, K)$ is a $\bmod C$ isomorphism, and also $H_{i}(Y, *) \rightarrow H_{i}(X, *)$, since we can use the spectral sequence. This implies $H_{i}(Y, K) \rightarrow H_{i}(X, *)$ is a mod $C$ isomorphism. This proves that both maps that we want in the diagram are isomorphisms mod $C$.

Corollary 20.4. Let $X$ simply connected, $p$ a prime. Then

$$
\pi_{i}(X) \otimes \mathbb{Z}_{(p)}=0 \text { for } i<n \Longleftrightarrow \bar{H}_{i}\left(X, \mathbb{Z}_{(p)}=0 \text { for } i<n\right.
$$

and in this case $\pi_{n}(X) \otimes \mathbb{Z}_{(p)} \xrightarrow{\sim} H_{n}\left(X, \mathbb{Z}_{(p)}\right)$.
Theorem 20.5 (Relative mod $C$ Hurewicz). Let $C$ be an acyclic Serre ideal. Let $(X, A)$ be a pair both simply connected, and $n \geq 2$. Then

$$
\pi_{i}(X, A) \in C \text { for } i<n \Longleftrightarrow H_{i}(X, A) \in C \text { for } i<n
$$

and in such case $\pi_{n}(X, A) \rightarrow H_{n}(X, A)$ is a $C$ isomorphism.
Proof. Let $F$ be the homotopy fiber


The right one is fine by the absolute Hurewicz. For the other one, look at the relative Serre spectral sequence.

Theorem 20.6 (Mod $C$ Whitehead). Let $C$ be an acyclic Serre ideal. Let $F: C \rightarrow Y$ a map of simply connected spaces. Then the following are equivalent: (i) $\pi_{i}(X) \rightarrow \pi_{i}(Y)$ is an isomorphism
mod $C$ for $i<n$ and $C$-epi for $i=n$, (ii) $H_{i}(X) \rightarrow H_{i}(Y)$ is a $C$-iso for $i<n$ and $C$-epi for $i=n$.

Corollary 20.7. Let $f: X \rightarrow Y$ simply connected and $H_{*}\left(-, \mathbb{Z}_{(p)}\right)$ of finite type. If $H_{*}\left(f, \mathbb{F}_{p}\right)$ is iso, then

$$
\pi_{*}(X) \otimes \mathbb{Z}_{(p)} \xrightarrow{\sim} \pi_{*}(Y) \otimes \mathbb{Z}_{(p)} .
$$

Example 20.8. Let us compute some $H^{*}(K(A, n), \mathbb{Q})$.
If $A$ is a torsion group, using $C_{\text {tor }}$ we get $\bar{H}_{*}=0$.
If $A=\mathbb{Z}$, then $K(\mathbb{Z}, 1)=S^{1}$, and $K(\mathbb{Z}, 2)=\mathbb{C} P^{\infty}$. We can compute for $n=2$ instead by using the fibration $K(\mathbb{Z}, 1) \rightarrow P K(\mathbb{Z}, 2) \rightarrow K(\mathbb{Z}, 2)$. This generalizes for all $n$ using the multiplicativity of the spectral sequence. We get $H^{*}(K(\mathbb{Z}, n), \mathbb{Q})$ is $\mathbb{Q}\left[\iota_{n}\right]$ is $n$ is even, and $\left.E[\iota) n\right]$ is $n$ is odd (exterior algebra).
 generated. Let $S^{n} \rightarrow K(\mathbb{Z}, n)$ be a generator (of $\pi_{n}(K(\mathbb{Z}, n))$ and $H^{n}\left(S^{n}\right)$ ). For $n$ odd, this is a $\mathbb{Q}$-iso in $H_{*}$, hence in $\pi_{*} \otimes \mathbb{Q}$.

For $n$ even, let $F$ be the homotopy fiber of $S^{n} \rightarrow K(\mathbb{Z}, n)$. Analyzing the spectral sequence, we get that $H^{*} F$ is exterior with a class in dimension $2 n-1$. So there is a map $S^{2 n-1} \rightarrow F$ with is a $Q$-isomorphism.

So

$$
\pi_{i}\left(S^{n}\right) \otimes \mathbb{Q}=\left\{\begin{array}{cc}
\mathbb{Q} & \text { if } i=n \\
\mathbb{Q} & \text { if } i=2 n-1 \text { and } 2 \mid n \\
0 & \text { otherwise }
\end{array}\right.
$$

