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1. 03/02/2020

Agenda:
e Basic homotopy theory - category theory and obstruction theory

e Vector bundles, principal bundles, ...
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2 HAYNES MILLER, NOTES BY MURILO ZANARELLA

e Spectral sequences (Serre)

e Characteristic classes, applications

1.1. Some category theory. Talked about colimits.

Example 1.1. For a group G, consider it as a category. A group action is a functor G — Set.

Then the colimit of this functor is the orbit space G\ X.

Adjoints and stuff

2. 05/02/2020

Missed lecture (STAGE)

3. 07/02/2020

3.1. Homotopy category.

Proposition 3.1. k-spaces are closed under quotients, closed subspaces, product with compact

Hausdorff spaces and colimits. Moreover, k(X Xtop Y) = X Xitop Y.

Definition 3.2. A space is weakly Hausdorff if the image of X 2 x XxTop X is closed. Weakly

Hausforff k-spaces are also Cartesian closed.

Example 3.3. For fy, f1: X — Y, we say they are homotopic if there is an extension

X

I

I-X 3y

[

and a map h: I x X — Y is the same as a map I — Y X, and so [X,Y] = 7o (YX).

Definition 3.4. A pointed category is a category with an initial and terminal object that are

isomorphic.

Note that if a category was Cartesian closed and pointed, then %'(X,Y) = €(x,Y¥X) =
% (0,YX) = . So Top, will not be Cartesian closed.

But we still can make sense of YXx = {f: X =Y, f(x) = x} C YX. And now we have:
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Proposition 3.5. Top, (W,Y.X) ~ Top,(W A X,Y)) where WAY = (W xY)/(W VY) is the

smash product.

It behaves like a tensor product. For instance, we have W A S° = W, but associativity is false
in Top,, but true in kTop,.

For a pair (X, A) € Top, we can make sense of X/A € Top,, and taking A = ), we must have
X/0 = X, := X Ux, and this functor X — X is left adjoint to the forgetful functor.

We think of spheres as S™ = I"™/dI™, and we can compute S™ A S = S™+™,

Definition 3.6. The reduced suspension of X is ©X := S'AX. The loop space of X is QX := Xfl.
We note that X" X = S" A X and Q"X = X",

Theorem 3.7 (Milner). If X is a pointed countable CW complez, the QX is homotopic equivalent

to a pointed countable CW complez.

Definition 3.8. The category HoTop, is where the hom sets [, ]« are modded by pointed ho-
motopies. We define m,(Y) := [S™,Y].. This is the same as 71 (Q"~'Y) if n > 0, and so it has a

group structure.
Theorem 3.9 (Today). If X is simply connected finite complex and all 7.(X) are known, then

X ~ .

4. 10/02/2020

4.1. Fiber bundles and Fibrations.

Definition 4.1. A fiber bundle is a continuous map p: E — B such that for any b € B, there is
an open neighborhood b € U such that p~*(U) ~ p~1(b) x U. We call E the total space, B the base

space, p the projection.
Example 4.2. A covering space is a fibre bundle with discrete fibers.
Example 4.3 (Hopf bundle). S3 C C?, and we have a map to CP* ~ S? taking v to Cuv.

Example 4.4 (Stiefel Manifold and Grassmannian). Vj(R™) is the space of ordered orthonormal k-
frames in R™. It is a compact manifold (sits inside (S™~1)). It is also V3, (R") ~ Homisometric (R¥, R™).
Grp(R™) is the space of k dimensional linear subspaces. The map span: V;(R") — Gri(R") is a

fibre bundle.
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Note the Hopf bundle is the special case (k,n) = (1, 2).
We will also talk about Lie groups: O(n), SO(n),U(n), SU(n), Sp(n).

Theorem 4.5 (Hilbert’s 5th problem). If G is a topological group and homeomorphic to a finite

CW complez, then G is a compact Lie group.

If G is a topological group and homotopic equivalent to a finite complex, we define G ~ H

generated by homomorphisms that are homotopic equivalent.

Theorem 4.6. There are uncountably many non-equivalent topological groups homotopic equiva-

lent to S®.

Theorem 4.7. A smooth map p: E — B is a fibre bundle provided that: (i) p~*(b) is compact for

all b (we call this proper), (ii) The map dp is surjective at every point (we call this a submersion,).

Corollary 4.8. For G a compact Lie group, and K C H C G closed subgroups. Then G/K —
G/H s a fiber bundle.

Note that the example Vi (R"™) — Grg(R"™) is in fact O(n)/(O(n—k) x I,) = O(n)/(O(n —k) x

O(k)) is an example of the above.

5. 14/02/2020

Talked about fibrations last time. We denote X xy E = f*E the pulback of F — Y along
i X—-Y

Proposition 5.1. Suppose fo ~ fi: X =Y, and a fibration p: E — Y. Then f§E ~ ffE.

Proof.
*E ev'E E

| | p
X — s YV¥xXx 2,7

| Jpm

T L yx

and then use that a path in YX give the homotopy we want. O



18.906: ALGEBRAIC TOPOLOGY II, SPRING 2020 5

5.1. Cofibrations. For a map i: A — X, when is YX — Y4 a fibration? The adjoint of the

path-lifting diagram becomes

WxA—WxX

l l

WxIxA——WxIxX

Doing an adjunction again, we get

A—— X

and now this is the same as
IxAUs4 X — YW
R

|

IxX

Definition 5.2. i: A — X is a cofibration if it satisfies the homotopy extension property:

IxAUAX*%Z

|

IxX
We proved the following lemma.
Lemma 5.3. Ifi: A — X is a cofibration, then for any Y we have that YX — Y4 is a fibration.

There is a universal example: denoting M (i) = I x AU, X, the universal example is Z = M (7).

So i is a cofibration if and only if M (i) — I x X admits a retract.
Example 5.4. S"~! — D",

Example 5.5 (Preservation of cofibrations). Pushouts: for A — B, B — BUy4 X is a cofibration.
Coproducts (disjoint union). Composition. Product with any space (dual to fibrations being

preserved under exponentials).

Proposition 5.6. If A C X is a sub CW complez, then it is a cofibration.
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Remark 5.7. Cofibrations are usually closed inclusions.
Proposition 5.8. Ifi: A — X is a cofibration and A ~ %, then X ~ X/A.
We now have the following easy proposition.

Proposition 5.9. Any map X — Y admits a factorization X — M(f) =Y where X — M(f) is

a cofibration and M(f) — Y is a homotopy equivalence, and this can be done naturally in f.

6. 18/02/2020

6.1. Barratt—Poppe periodicity. Here we work with everything pointed. This changed slightly
the notions of fibration and cofibration.

A cofibration becomes
X —Y

|

I_;,_/\X*}I_;'_/\Y

and we can see that a cofibration is a (regular) cofibration that preserves basepoint.

The mapping cylinder M (f) must be changed by colapsing the base points, and this becomes
the mapping cone C(f). Also note that C(f) is the pushout of X — Y and X — C(X — x). It
is an example of a homotopy colimit. This means Y — C(f) is a cofibration. If f is already a

cofibration, then so is C(X — %) — C(f). Then C(f) ~ C(f)/C(X — %) =Y/X.
Example 6.1. ¥X = C(X — ).

The cone also has a universal property: X i> Y — C(f) is null-homotopic with a canonical
homotopy I+ AX — C(f). It is universal among such null-homotopies. Soif [C(f), Z]. — [V, Z]« —
[X, Z]. is "exact", in the sense that things that map to a null-homotopy are exactly the image.
We call X Y — C(f) co-exact.

We can take the "cone resolution” of any map f: X — Y. Since Y — C(f) is a cofibration,
C?(f) is homotopic to C(f)/Y = LX. In the same way, C3(f) is homotopic to XY. We note that
the map XX — XY is —X(f). We get

X =Y =Cf) = E2X 5 XY - 20(f) = 22X — -+ .
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This is the homotopic exact sequence of a pair: if A C X, then we have H, (X, A) = H,(C(i)) since
H,(XUCA) = H,(XUCA, x) = H,(XUCA,CA) = H,(XUC<12A,C<q/2A) = H (M (i), AxI) =
H.(X,A).

7. 21/02/2020

We had 7, (X) = [(I",0I™), (X, x)]. We want to define m, (X, A, ).
Definition 7.1. Let J,, = 01" ! x IUI" "1 x{0}. We define 7, (X, A, %) := [(I",0I", J,,), (X, A, x)].

Note that we have a map 9: m,(X, A) = m_1(A).

This gives us a “sequence” (compositions are trivial):
e = 7T2(X, A) — 7T1(A) — 7T1(X) — 7T1(X, A) — 770(A) — FQ(X).
of pointed sets.

7.1. Homotopy fibers. A pointed fibration is

W ——F

I_;_/\W*}B

And we also have a factorization '
Xhom.equlvT(f)

\ lp
Y
where T(f) = {(z,w) € X x Y!: w(1) = f(z) € Y}. We call F(f) = p~!(*) the homotopy fiber:
F(f)={(z,w) € X x YI: w(1) = f(z) € Y,w(0) = *}. This is the same as a pullback

F(f) — T(f)

* —
i~

or a pullback

P(Y) ——>Y

where P(Y)=T(x = Y) ={w: I — Y : w(l) = %}, which is contractible.
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Note that the fibre of P(Y) — Y is QY, which means that the fiber of the fibration F(f) — X
is also QY

Lemma 7.2 (Was in homework). For g: W — E and f: W — B such that po g ~ f, then there

is g’ ~ g withpog = f.

So p~l(x) = E — B is exact, that is, [W, F], — [W, E], — [W, B].. is exact for all W. As before,
we get a sequence

Y £ X « F(f) « QV « QX « QF(f) « Q%Y « -
and hence an exact sequence
m0(Y) = m0(X) = mo(F(f)) <= m(Y) = mi(X) = m(F(f)) = ma(Y) < -

Lemma 7.3. For a pairi: A — X, there is an isomorphim of m,_1(F (i) with m,(X, A) making
the following diagram commute

T (X) —— m (X, A)

Nl JN

Tn—1(0X) —— m—1(F (7))
and the right vertical arrow is compatible with the maps to m,—1(A).
Corollary 7.4. 7,(X, A) is a group for n > 2, and the exact sequence before is exact.

Also, m1(A) acts on 7, (X, A) for all n > 1 compatibly with the long exact sequence. The action
is given by connecting J,, with a larger J,, with the element of 71(A). So the long exact sequence

is m1(A) equivariant.

8. 24/02/2020

8.1. Techniques in CW complexes.

Definition 8.1. A relative CW complez is a space X with a filtration A=X_1 C Xy C---C X

such that: (1) for all n > 0 there is a pushout square

attachin,
[ sn—tetteching g

| J

Dt — X
H characteristic™ "
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Definition 8.2. A map p: E — B has the relative lifting property with respect to A — X if

IxAUOxX*%E

IxX — B

Definition 8.3. A Serre fibration is p: E — B satisfying the homotopy lifting property for all

CW complexes.
Remark 8.4. The previous fibration is called a Hurewicz fibration.

Lemma 8.5. Let p: E — B be an acyclic (weak equivalence) Serre fibration. Then every fiber is

weakly contractible (there is a weak equivalence to a point).

Proof. We may assume E, B are path-connected. Then from the long exact sequence we get what

we want. O

Proposition 8.6. p: E — B. Then the following are equivalent: (1) p is a Serre fibration, (2) p
has the homotopy lifting property for all disks, (3) p has the relative homotopy lifting with respect to

Sy D" (4) p has the relative homotpy lifting with respect to relative CW inclusions A — X.

Proposition 8.7 (Relative straightening). Consider

At E
l lSerre
X — B

Assume there is ¢’ ~ g making the diagram commute. If ¢’ admits a filler, then so does g.

Theorem 8.8 (Whitehead’s little theorem). f: X — Y is a weak equivalence if and only if
[W, X] — [W,Y] is a bijection for all W CW complezes.

For this we will use

Theorem 8.9 (Basic lifting theorem). We have

A—— F
R
rel. CW\L lacyclic Serre

X —— B
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Proof. By induction, we need to prove

st g

l L lacyclic Serre

D" —— B

In the case B = *, we need to prove that if E is weakly contractible, then S*"~! — F extends
to D™. We use the fact that if X is path connected, then (X, *)\m, (X, *) ~ [S™, X].

For the general case, we change g to ¢’ such that ¢’ = g o ¢ where ¢: D™ — D" is p(v) =
max (0, 2|v| — 1)v. By the relative straightening, it suffices to prove for ¢’, and we replace g by ¢'.

Now g is constant on D?/Q — B. Let W = I x S"~! be the annulus. Then we have

gt — s F

l h’l

IxsS" 1 —— B
And now S{‘/El NED B constant, so h(Sf/_Ql) lands on the fiber F = p~1(g(0)). But F is
weakly contractible, so h extends to a map D{L/Q. This gives the whole map from D™. O

Proof of Whitehead’s little theorem. Consider X — T f — Y the factorization into a homotopy
equivalence and a Hurwevicz fibration. This implies T'f — Y if a weak equivalence. Since [W, X] ~
[W, T f], we may assume that our original map is a acyclic Serre fibration.

Then the surjection follows from the previous lemma on the relative CW inclusion () — W, and

the injectivity follows from the previous lemma on the relative CW inclusion 0I x W — I xW. [0

9. 28/02,/2020
9.1. Conectivity, Skeletal approximation, CW approximation.
Definition 9.1. A space X is n-connected if 7,(X) = 0 for ¢ < n.

Definition 9.2. A pair (X, A) is n-connected if: n = 0: mo(A) = m(X); n > 0: me(X, A,%) =0

for all ¢ < n.

Definition 9.3. f: X — Y is an n-equivalence if: n = 0: mo(X) — mo(Y); n > 0: my(X) — 7, (Y)

is iso if ¢ < m and surjective if ¢ = n.

Theorem 9.4 (Whitehead). Let X — Y be an n-equivalence. Then [W,X| — [W,Y] is iso if

dim W < n and surjective if dim W = n.
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Theorem 9.5 (Skeletal approximation). Consider f: (X, A) — (Y,B) a relative CW complex
map. Then f is homotopic relative to A to a skeletal map. Moreover, if fo, f1 are skeletal and

homotopic, then the homotopic can be deformed so as to send X, into Y,11.

Example 9.6. Consider Y = 8™ and X = S?, with S = xU D™. Then if ¢ < n, it is homotopic

to the identity. Hence m,(S™) = 0 for ¢ < n.
Moreover, we also have the following as a consequence of the skeletal approximation.
Theorem 9.7. (X, X,,) is n-connected.

Theorem 9.8 (CW approximation). For any Y there exist a CW complex X and a weak equiva-
lence X — Y.

Proof. We prove by induction. We will construct the n-equivalence X,, — Y inductively. For
n = 0 take a point for each path component to be Xy. Now we may assume Y is path-connected.
Pick generators of 71(Y') as a group, and for each one put the loop into X;. Now we want to
make the isomorphism on 71, so we take generators for the kernel 1 (X;) — m1(Y"). Then we have
| |S' — Xi, so we can pushout the | |S' — | | D? to get X5 — Y. Then the m; agree. Now do
the same to construct X (making 7o surjective): choose generators of mo(Y') as a Zm (Y)-module
and attach them. Continue this way, use skeletal approximation for the argument of putting in

the relations. O

Theorem 9.9 (CYC Wall). Assume Y is simply connected, and H,(Y) is finitely generated for
all m. Then there exist a weak equivalence X — Y with X a CW complex where there are By, + Tp_1

n-cells in X. (B, the betti numbers, and 7, the number of generators in the torsion of homology).

10. 02/03/2020

10.1. Postnikov systems.

Proposition 10.1. Suppose (X, A) is a relative CW complex, with all cells with dimension > n.

Then (X, A) is n-connected.

Theorem 10.2. Let X be a space and n > 0. There exist a map f: X — X|n| such that (i)
(X, %) = 7y (X[n], f(x)) is an isomorphism for all + € X and all ¢ < n, (%) 7y(X[n], f(x)) =0

for all ¢ > n, (i) X[n] is built from X by attaching cells in dimension > n + 2.
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X|[n] is a Postnikov section of X.

Example 10.3. If n = 0, then X[0] = mo(X) with discrete topology. If n = 1 and X is path-

connected, X[1] is a K(m(X),1). For n > 1, we have new spaces.

Proof of the theorem. We build it via skeletons X = X(n) — X(n+1) — --- such that m;(X (7)) =
0. We construct X (i) — X (i+ 1) by attaching i +2 cells. Then 7y (X (i)) = mg(X (i+1)) for ¢ <
and mi1o0(X(i+1), X)) = mir1(X (%)) = mip1(X(1+1)) — 0. So we can make 7,11 (X (i+1)) =0
by picking generators of 7;1(X (7)) attaching a i + 2 cell. Then X[n| = lim, X (1), and we need

to justify why @wq(X (1)) = mg(X[n]), which is a consequence of the next proposition. O

Proposition 10.4. Let X be a CW complex an pick a cell structure. Then any compact subset of

X lie in a finite subcomplex.

Proof. X is a disjoint union of cell interiors as a set. Note that any subset that meet each cell
interior in a finite set is discrete. So any compact set meet finitely many interiors (otherwise choose
a point in each of infinitely, and will be a subset of the compact sequence which is discrete and
infinite). This also proves that a CW complex is finite if and only if is compact.

Now we prove each cell lies in a finite subcomplex, which will finish the problem. A boundary
of a cell is a compact subset of dimension lesser, so it meets finitely many cells, which are all

contained in a finite subcomplex by induction. |
We may wonder how natural/unique X|[n] is.

Lemma 10.5. Let n > 0, suppose Y is such that my(Y,*) =0 for all x € Y and ¢ > n. Let (X, A)

be a relative CW complex with cells in dimension > n + 2. Then [X,Y] — [A,Y] is bijective.

As a consequence, for X — Y and any choice of X[m], Y[n], with m > n there is a unique
diagram as follows up to homotopy.
X —Y
X[m| —— Y[n|
This also implies that the X[n] themselves are unique up a unique homotopy class of weak-

equivalences.
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This also implies that X[n 4+ 1] — X[n] is unique up to homotopy. So we have a tower X —
-+ = X[2] - X[1] — X|[0]. This is called the Postnikov tower. It is sort of a dual of a skeletal

filtration.

11. 06/03/2020

From last time:
Corollary 11.1. X is simply connected with Hy(X) =0 for ¢ < n. Then X is (n — 1)-connected.

Example 11.2 (Non-example). Poincaré 3-sphere. Consider the isosahedral group I C SO(3) C
SU(2), and then lifting I to I, we consider P = §3/I. Then 7 (P) = I, and since I** = 1, we have
H,; =0 and by Poincaré duality Hy = 0.

11.1. EM spaces. Our model was: for an abelian group m, take a free resolution 0 — F} — Fy —

7w — 0 and then construct the cell complex M (Moore space) like that, and then K(m,n) = 1<, M.

Lemma 11.3. Let Y be any space with 7,(Y) = 0 for ¢ # n and m,(Y) = G. Then [r<, M, Y], ™%

Hom(w, G) is an isomorphism.

Corollary 11.4. If m = G, then there is a weak equivalence <, M — Y. If both are CW complezes,

then there are homotopic. So there is a functor Ab — Ho(CW,.) with a section by m,.

Proof. Consider the co-exact sequence A\ S™ — A S™ — M — A S"™t — A S™H! and take [-,Y].

for a Y as above. Then we get
Hom(Fy,G) + Hom(Fy,G) <+ [M,Y]. — 0,
and so [M,Y], = Hom(r, G). Then [M,Y], = [7<, M, Y].. O
Remark 11.5. The Moore space cannot be made functorial.
If n =1, m, G can be non-abelian.
11.2. Relation with cohomology. Write K = K (m,n). Then H,(K,G) =0 for ¢ < n. Then

0 — Ext(H,—1(K),G) - HI(K,G) - Hom(H,(X),G) — 0.
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So H'(K,G) = 0 for ¢ < n, and for ¢ = n we get H"(K,G) = Hom(H,,(K), @) and by Hurwewicz
we have H,,(K) = 7. Hence

H"(K,G) = Hom(r, Q).

In the case G = 7, we have a distinguished ¢,, € H" (K, ) given by the identity map under the
above identification. This is called the fundamental class.

If X is any space, and we have f: X — K, we can consider f*(v,) € H"(X, ). This gives
[X,K(m,n)] — H"(X, 7).

Theorem 11.6. If X is a CW complex, then [X, K(m,n)] = H"(X,T) as abelian groups. i.e. i,

is the universal n-dimensional cohomology class with coefficients in .
Example 11.7. H?(X,Z) = [X,CP*>|, HY(X,Z) = [X,RP*>], HY(X,Z) = [X, S!].

Proof. We work with pointed maps [X, K]., and we need to prove [X, K], — FH(X, 7). The
group structure on the left is given by the following: K (m,n) is weak equivalent to Q2K (m,n + 2),

and this gives the group structure. To see this is a group homomorphism, note that

H"(X)x H"(X) H"(X)

TNEx) x T (EX) — BN Ex ASX) —— B (EX)

ia the map ¥X — XX A XX by pinching. This is the same way as the multiplication on the left
is given.

Now to prove it is an isomorphism, work by induction: A S"~! — X,, — X, 11 is co-exact,
so gives a exact sequence under both H* and [—, K].. This reduces to proving it for wedges of
spheres. This is true by the definition of K (m,n).

Then we do a limiting argument if the CW complex is infinite. O

Remark 11.8. (i) Could prove that H™ is representable directly: by axiomatizing certain properties
of H™: (Brann) representability.

(ii) We used that K(m,n) was weak equivalent to QK (m,n + 1) and that is represents the
suspension isomorphism in H*. A sequence of pointed spaces F, with maps X E,, — E,4+1 is a
“spectrum”. This is a 2-spectrum if the adjoints E,, — QF, 1 are weak-equivalences. With such

a spectrum, we define

E": Ho(Top,) = Ab, X — [X,E,].



18.906: ALGEBRAIC TOPOLOGY II, SPRING 2020 15

a generalized Cohomology theory (satisfy all axioms except dimension). And any generalized co-
homology theory arrises in such a way.

(iii) From the Yoneda lemma, we get that natural transformations from H™(—,7) to H"(—, Q)
is the same as H"(K(m,m),G). As an example, H*(K (F2,n),F3) give the optimal value category

for H*(—,F3) (Steenrod operations).

12. 09/03/2020

12.1. Obstruction Theory. Recall that for a relative CW complex (X, A), we define C, (X, A) =
H,(X,,X,—1), and the boundary map is

Hn(Xn,anl) 3} anl(anl) — Hn71<Xn717Xn72)~

And fixing a set of n-cells K,,, we have C,, (X, A) ~ ZK,,.
Theorem 12.1. H.(X,A) = H.(C.(X, A4)) and H*(X, A, 7) = H"(Hom(C.(X, A), 7)).

Recall that we saw [X,Y] = # if dimX < n and Y is n-connected. A generalization of this
question is when we can extend f: A - Y to X — Y.

Note that we can always extend to Xy. To extend to X;, we need endpoints of 1-cells to map
to the same connected component, and sometimes we can change the choice on X to allow it.

Say we want to extend f: X,, — Y to X,,11. We assume that Y is simple and path-connected, as
then [S™, Y] = m,(Y). Then we get K, 11 — 7, (Y) and so Cp,41(X, A) = m,(Y), hence an element
of 0y € C"T1(X, A, m,(Y)). This is called the obstruction cocycle. Now f extends to X, 41 — Y if

and only if 07 = 0.
Proposition 12.2. 0; is a cocycle.

Proof. We need to prove Hy, o(Xpni2, Xni1) 9, Hpi1(Xng1) = Hpp1(Xng1, Xn) 9—f> (YY) is
zero. Now H,io(Xp42, Xpnt1) actually all come from m,49(Xp42, X511, %), and we have a corre-
sponding sequence of maps in homotopy mapping to this. Now 8 is defined by 7y, 11 (Xp41, Xn, *) =
T (Xn) ELN 7 (Y). But now along the way we have the map 7,41 (Xpn41) = Tni1(Xnt1, Xn) —

7n(Xp), which is 0. O

Theorem 12.3 (Main theorem of obstruction theory). Let (X, A) be a relative CW complex, Y
simple and path-connected. Suppose we have f: X, — Y. Then f|x,_, extends over X1 if and

only if 0y € H" (X, A, 7, (Y)) is trivial.
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Proof. Consider two maps fq, f1: X, — Y that are homotopic when restricted to X,,_1. We want
to relate 6y, and 6y, . Our data is the same as a map g: X, x 0/ UX,,_1 x [ =Y.

For a CW complex X'  we give X’ x I a cell structure: each i cell gives 2 i cells and a i+ 1 cell,
which we call e x 0, e x 1 and e x I. This gives a map K;(X') = K,;11(X’ x I), which extends to
Ci(X') = Ci1 (X! x I).

Note that g: (X x I),, — Y. Then we consider §, € C"*!(X x I, 7,(Y)). The above map induces
a map C"(X x I, m,(Y)) = C"(X,m,(Y)). We call § the image of ,. That is, §(e) = 0,(e x I).
Let’s see what is dd. We have d(e x I) = (0e) x I + (—=1)"(e x 1 — e x 0). Then

(d8)(e) = 6(e) = O(De x I) = dby(e x I) = (=1)"(Bg(e x 1) = Oy (e x 0)) = (=1)" 1 (0p, — 0p,)(e).

So dé = (—=1)"*1 (0, — 05,). In particular, [0f,] = [0f,] € H" (X, A, 7, (Y)).

Moreover, using homotopy extension we can prove that for fo: X, = Y and § € C*(X, A, 7, (Y)),
then there is f1: X,, — Y homotopic to fo on X,,_; such that dé = (—=1)"T1(0y, — 6y,).

Now if [#,] = 0, we can use the above to produce f1: X,, = Y with 67, = 0, so f1 extends to
Xnt1- O

Corollary 12.4. If H""Y(X, A, 7,(Y)) = 0, then any map A — Y eatends to X. Moreover, if

H™(X,A, 7, (Y)) =0, then the extension is unique.

13. 11/03,/2020
13.1. Vector bundles.

Definition 13.1. A vector bundle over R is a fiber bundle p: F — B with a addition map
FE xp E — FE over B, together with a multiplication by scalar map R x £ — FE over B such that:
(i) the data give the fibers a finite dimensional vector space structure, (ii) the trivializations of the

fiber bundle can be chosen to be fiber-wise linear isomorphisms.
We will denote the trivial bundle B x R™ by nep.

Example 13.2. Tangent bundle of a smooth manifold. RP™ has the tautological bundle, usually

denoted A, same thing about the Grassmanian.

For (E, B), (E’, B'), can construct (Ex E', Bx B').If B= B’ , weget E®GE' := EXE' Xpxp B
via B 25 B x B the Whitney sum. Can do the same thing for the tensor product (externally and

internally). Also can take Hompg(FE, E').
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We can consider Vect,, : Top®” — Set.
Theorem 13.3. It is a homotopy functor, and is representable.

We can consider metrics, by which we mean a fiberwise inner product (always exist it there is
a countable trivializing cover). In particular, any short exact sequence of vector bundles split by
choosing a metric.

For (E, B), consider P, = {f: R® = E}}, and P = | |, P, — B. This admits a topology, since
for nep gives P = B x GL,(R). This is called the principal bundle of (E, B). It has a section
exactly when (E, B) is trivial. It also has an action of GL, (R) that is free, and P/GL,(R) = B.

This is the definition of a principal G-bundle: P with a G action that is free, and P — P/G a
fiber bundle. We can produce a n-dim vector bundle out of this by taking PxR"™/((¢g,v) ~ ¢, gv)).

This is the Borel construction. This defined a functor Bung: Top — Set.

Theorem 13.4. This is a homotopy functor, and representable.

14. 30/03/2020

14.1. Spectral sequences. Consider a fiber bundle p: E — B, with homotopy fiber F. How can
we relate H,(E), H.(B), H.(F)?

Let us assume that B is a CW complex. Then we have a filtration Sk, B, which pullback to a
filtration F,E = p~!(SkyB).

This filtration induces a filtration on the singular chain complex: FjS.(E) = S, (FrE) C S.(E).
One example of this is cellular homology when p is the identity.

Today: will see some examples. Consider p: B x F' — B. If we assume that our coefficients are
fields, then we have the Kiinneth isomorphism and so H.(B x F) = H,.(B) ® H.(F'). In the case of
the Hopf fibration S® — S2, we can see that we have a differential from (2,0) to (0,1). The same

thing happens with the other Hopf map S” — S* but with a longer differential.

15. 03/04,/2020

15.1. Serre Spectral sequence. For p: E — B a fibration, let F.E = p~'Sk.(B).
This gives us B2, = Hy(B, Hi(F)), where H,(F) is a local system.

Theorem 15.1. If E — B is a Serre fibration, there is a natural first quadrant spectral sequence

Eg,t = HS(B7Ht(p71(*)) = Hs+t(E)-
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Example 15.2. Let’s compute H,(QS™) for n > 1. We have the fibration PS™ — S™ with fiber
QS™. Then EZ, = Hy(S™) ® Hy(25™). Since we know the answer, we can compute Hy(€25™) to be

Z whenn — 1|k >0, and 0 otherwise.

16. 06/04 /2020

16.1. Exact couples.

Definition 16.1. An exact couple is a diagram of abelian groups

which is exact.

In this situation, d: E — A — FE is a differential.

The derived couple is another exact couple A’, E' with A’ =im A, and E' = H(FE,d). i’ is just
i. 7" is j'(ia) = j(a), which is well defined. For k', let e € E be a cycle, so jke = 0, then ke € A,
so define k' (e) = ke.

We may do this repeatedly, getting A" and E().

We give Z x Z grading to an exact couple. We say it is of type r if degi = (1, —1), degj = (0,0)
and degk = (—r,r — 1). Then degd = (—r,r — 1).

For a filtered complex F,C,, we get an exact couple Af , = H,y¢(FsCs) and Ef ; = Hyy¢(gr Ce).

Given a type 1 exact couple A, E’, write A" := (A’)"=1) and E" := (E")("=1). We can put the

exact sequences side by side with the s degree, and the differential show up

and now a diagram chasing from x € E with d'z = 0, we can naturally find z; € A’,_,, and we
define d?(z) := j(z1). If d*(z) = 0, then can do the same thing to give d®(z). If all the differentials

are 0, we would hope that x lifts to A”.

Example 16.2. Postnikov tower: Y pointed path connected, have the tower of fibrations ¥ —

-+ = Y[3] = Y[2] — Y[1], with homotopy fibers being K (7 (Y), k). Applying . give us long
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exact sequences. We may also apply 7. ((—)ZX ) for some pointed space X (still a tower of fibrations).

E' will be the new fibers K (m(Y), k)X, whose 7, is:

sS—n

Ta(K (7, (V),8)5) = [S" A X K (m(Y), )], = [X, K(mo(V)os — )] = B (X, my (V).

Have to be careful: convergence issues, some of m,, are not abelian. This works stably.

Example 16.3 (Atiyah—Hirzebruck—Serre). R.(—) a generalized homotopy theory. Exact se-
quence of pairs give us an exact couple so that we have a spectral sequence of a fibration Eit =
Hs(B,Ri(p~(—))) = Rs++(E). Though now we do not necessarily have a filtration, as we don’t

have chain complexes. If p is trivial: Hs(B, R¢(%)) = Rs1+(B).

17. 10/04,/2020

17.1. Hurewicz theorem. Suppose £ — B is a simple system (i.e. the local system is trivial).

Assume H4(B) = H{(F) =0 for s < p,t < q. For a while, all differentials are transgressions:
EX = Hy(B) % Hy y(F) = EgS_ — 0

for s < p+ q and
0 — Eg, — Ho(E) = E.

forn <p-+gq.

We can put these together
Hyiq-1(F) = Hprq-1(E) = Hpiq-1(B) = Hpyq2(F) = -

It looks like the homotopy sequence! And in fact we have a map from the homotopy one to this

one by the definition of the transgression.
Corollary 17.1. Let X be (n—1)-connected for n > 2. Then H;(X) = H;_1(QX) fori < 2n—2.
Theorem 17.2 (Hurewicz). If X is (n — 1)-connected for n > 2, m,(X) ~ H,(X,Z).

)

Proof. Induction on n. O
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17.2. Relativity. For a pair of spaces (B, A), say B path-connected, and local systems trivial on

E‘A%E

Lo

A—— B

Then we get
HS(B7A,Ht(F)) — Hs+t(E’E|A)-

Also can consider making it relative along the fiber than the base.

Theorem 17.3. Assume A C X both are simply connected and n > 3. Assume 7;(X,A) =0 for
1<i<mn. Then Hi(X,A) =0 fori <n and h: m,(X, A) ~ H, (X, A).

Proof. First check that Hs(X,A) = 0 by comparing the Hurewicz maps. Using the regular
Hurewicz theorem.
Now do induction on n. If F' is the homotopy fiber of A — X, we have m,(X, A) = my_1(F).

Now study the Serre spectral sequence
E?, = Hy(X, A, Hy(QX)) = Hy1(PX,F) ~ moy1(F) ~ w4 (X, A).

By the universal coefficient theorem, we have Eit =0 for s < n.

This means it is an isomorphism in degree n: H, (X, A, Hy(QX)) ~ m,(X, A) as we wanted. [

18. 13,/04/2020

Note about last class: relative Hurewicz implies Whitehead:

Theorem 18.1 (Whitehead). Any weak equivalence induces homotopy in homology.

If X and Y are simply connected (or even simple), then the converse is true: isomorphism in
homology implies weak equivalence.

Combined with Whitedead’s little theorem, this gives a homotopy equivalence is X,Y are CW

complezxes.

18.1. Cohomology Serre Spectral Sequence. To filter the cohomology, we filter them by
kernels F__S*(X) = ker(S*(X) — S*(Fs_1X). Define F* = F_,.

This gives a spectral sequence d,.: ESt — Estmt=+1 with Byt = grsCett.

We also have a first-quadrant condition: F°C® = C®, N F*C* = 0 and H"(gr*C*®) = 0 for

n < s. In this case, gr* H51(C*) = E5!.
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Theorem 18.2 (Serre spectral sequence). Ey' = H*(B, H'(p~'(-))) = H*'(E).

18.2. Products. Now let R be a commutative ring of coefficients.

Then we have H*(p~1(—)): m1(B)°? — {commutative graded R algebras}. Then H*(B, H!(p~1(-)))
is also a bigraded commutative R-algebra: yz = (—1)I*!Ilzy where |z| is the total degree of z.

Then the cohomology spectral sequence is multiplicative, in the following sense (more natural

using Dress’s construction of spectral sequences):

e Each E$! is commutative bigraded algebra.
do(z,y) = (dyx)y + (=1)*lzd,y.
E,;1 = H(E,) as algebras.

FSH*(E) - F H*(E) C F**5' H*(E) and gr*(H*(E)) ~ E%* as algebras.
e E5°=H*(B,H*(p~(-))) as algebras.

What happens in the Gysin sequence: E — B fibration by homology spheres, oriented: H*(p~1(—), R) ~

H*(S""1 R).
o= H™(B) - H*(B) —» H*(E) - H*""Y(B) — - --

Consider ¢ € H°(B,H" '(p~'(—)) such that (resy(c),[p~*(—)]) = 1 (canonical given the
orientation). Let e = d,o € H™(B). This is called the Euler class. It is a characteristic class: it is
natural with respect to pullbacks.

Now the map H* "(B) — H*(B) is given by « +— d,,(z - 0) = (d,, - )0 £ x - dpyo = te - x.

If a spherical bundle E — B has a section, then e = 0.

Theorem 18.3. Considering the tanget bundle 7: TM — M for a R-oriented closed manifold M,
then {ex, [M]) = x(M).

The third map is like integrating over the fibers.

Example 18.4. H*(QS") as a ring. Let = be a generator of H"~1(QS") with d,z = ¢,,.

Then if n is odd we have d,,(z?) = 22t,, but d, is an isomorphism, so there is 7, such that
27, = x%. The same thing says that there is v, such that nly, = 2™. So H*(QS") is a divided
power algebra I'[z].

If n is even, then x? = 0, so choose y such that d,y = t,z. Then H*(QS") = R[z]/2* @ T'[y].
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19. 15/04/2020

19.1. Serre classes. Let X be a simply connected space, and H, (X, Q) = 0. Then is m,(X)®Q =
0?

If H,(X) is p-torsion, is 7. (X) also p torsion?

If H.(X) are finitely generated, are m,(X) also finitely generated?

How about in-a-range versions?

Idea: Set up a class of “negligable” groups.

Definition 19.1. A class C of abelian groups is a Serre class if 0 € C, and if 0 - A - B — C — 0,
then Be C < A,Ce(C.

It is automatically closed under isomorphism, subgroups and quotients.
Proposition 19.2. If A —» B — C is exact and A,C € C, then B € C.

Example 19.3. Trivial groups, finite abelian groups, finitely generated abelian groups, torsion
abelian groups, p-torsion abelian groups, p-divisible abelian groups.

Intersection of Serre classes is a Serre class.

We work modulo a Serre class. For example, f: A — B is an isomorphism modulo Cj,, if and

only if f: AQ = B® Q.

Lemma 19.4. Let C be a Serre class. Then monomorphisms, epimorphisms and isomorphisms
mod C are closed under composition.

Moreover, isomorphisms modulo C' satisfy the two out of three property.

Proof. Use the exact sequence of composition. (]

Suppose C, is a chain complex. If C, is in C, then so is He(Cl).
If F, A is a filtered abelian group and the filtration is finite, then if gr A is in C, then so is A.
So if we have a first quadrant spectral sequence which is eventually 0 mod C, then the converging

object is also.

Definition 19.5. A Serre class C is a Serre ring if A, B € C implies A ® B, Tor(4,B) € C

It is a Serre ideal if the same conclusion holds when only A or B is in C.
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Theorem 19.6 (Mod C Vietoris—Bagle). Let p: E — B is a fibration with B path-connected
with path-connected fiber F. Assume 71 (B) acts trivially on He(F'). Let C be a Serre ideal, and
Hi(F) € C fort>0. Then p.: He(E) — Ho(B) is an isomorphism mod C.

Proof. Follows from the Serre spectral sequence since EZ, € C for t > 0. So EgS = 0 for t > 0. So

the edge homomorphisms (the maps we want) are isomorphisms mod C. O

Theorem 19.7. Letp: E — B is a fibration, B 71(B) acts trivially as before and F path connected.
Let C be a Serre ring. Assume that Hs(B) € C for 0 < s <n and Hy(F) € C for0 <t <n—1.

Then p.: H;(E,F) — H;(B,*) = H;(B,*) is a mod C isomorphism for i < n.
Proof. Use the relative Serre spectral sequence

E?, = H,(B,Hy(F)) = H,(E, F).

Theorem 19.8 (Mod C Hurewicz theorem). Let C' be a Serre ring such that
AeC = Hy(K(A1)) el forqg>1.
Let X be simply connected, n > 2. Then we have
(X)) €C forq<n < Hy(X)€C forq<n,
and in such case, 7, (X) — H,(X) is an isomorphism mod C.

Remark 19.9. It is not hard to prove that the above extra condition is true, for instance, for
C,..: it boils down to computing the homology of K(Z/n,1). This can be done by considering

~tor"

BZ/n — BS! with fiber S'/(Z/n) ~ S*.

20. 17/04/2020

Consider the Serre class C), the torsion abelian subgroups without p-torsion.

Then A € C), if and only if A® Z,) = 0.

Lemma 20.1. Let X,Y such that H.(—,Zy)) is of finite type, and X — Y an isomorphism on
H,.(—,F,). Then H.(X) — H.(Y) is an isomorphism modulo C,,.
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Definition 20.2. A Serre class C is acyclic if A € C implies H,(K(A4,1)) € C for all ¢ > 1.

Theorem 20.3. C an acyclic Serre ring, X simply connected, n > 2. Then m,(X) € C for g <n
if and only if Hy(X) € C for ¢ < n. In such case, m,(X) = H,(X) is an isomorphism mod C.

Proof. As before, by induction

Tn(X) +—=— m(PX,0X) —— m,_1(Q2X)

! ! |

H,(X) «— H,(PX,QX) —= H,_;(0X)

The difference is that for QX it is not easy to apply the induction hypothesis.

We get rid of m2(X) by considering Y = X[3,00) — X with homotopy fiber K := K (m2(X), 1).
By acyclicity, H;(Y,*) — H;(Y, K) is a mod C isomorphism, and also H;(Y,*) — H;(X, %), since
we can use the spectral sequence. This implies H;(Y, K) — H;(X,*) is a mod C isomorphism.

This proves that both maps that we want in the diagram are isomorphisms mod C. |

Corollary 20.4. Let X simply connected, p a prime. Then
Ti(X) @ Zpy =0 fori<n < Hi(X,Zg) =0 fori<n

and in this case mp,(X) @ Zyy — Hp(X, Zy))-
Theorem 20.5 (Relative mod C Hurewicz). Let C be an acyclic Serre ideal. Let (X, A) be a pair
both simply connected, and n > 2. Then

mi(X,A) € C fori<n < H;(X,A)eC fori<n

and in such case 7, (X, A) = H,(X, A) is a C isomorphism.
Proof. Let F' be the homotopy fiber

(X, A) «—— m(PX,F) ——— m,_1(F)

! ! !

H,(X,A) «— H,(PX,F) —=— H,_,(QF)

The right one is fine by the absolute Hurewicz. For the other one, look at the relative Serre spectral

sequence. O

Theorem 20.6 (Mod C Whitehead). Let C be an acyclic Serre ideal. Let F: C —Y a map of

simply connected spaces. Then the following are equivalent: (i) mi(X) — m;(Y') is an isomorphism
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mod C' for i < n and C-epi for i = n, (i) Hi(X) — H;(Y) is a C-iso for i < n and C-epi for

L =n.

Corollary 20.7. Let f: X — Y simply connected and H.(—,Z,)) of finite type. If H.(f, ) is
180, then

W*(X) ®Z(p) = 7T*(Y) ®Z(p)

Example 20.8. Let us compute some H*(K(A4,n),Q).

If A is a torsion group, using Cyo, we get H, = 0.

If A=7Z, then K(Z,1) = S', and K(Z,2) = CP>. We can compute for n = 2 instead by using
the fibration K(Z,1) - PK(Z,2) — K(Z,2). This generalizes for all n using the multiplicativity
of the spectral sequence. We get H*(K(Z,n),Q) is Q[i,] is n is even, and E[1)n] is n is odd

(exterior algebra).

Example 20.9. Let us compute 7,.(S™) ® Q. First note that Cy 4 implies that 7, 5™ are finitely
generated. Let S™ — K(Z,n) be a generator (of m,(K(Z,n)) and H™(S™)). For n odd, this is a
@-iso in H,, hence in 7, ® Q.

For n even, let F' be the homotopy fiber of S™ — K(Z,n). Analyzing the spectral sequence, we
get that H*F is exterior with a class in dimension 2n — 1. So there is a map S?"~! — F with is a
@-isomorphism.

So
Q if ¢ =n,

m(S") @ Q=4 Q ifi=2n—1and?2]|n,

0 otherwise.
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