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1. Introduction

Definition 1.1. For a number field K, its Class Field Tower is

K = K(0) ⊆ K(1) ⊆ · · · ⊆ K(n) ⊆ · · · ,

where K(i+1) is the Hilbert Class field of K(i) for all i ≥ 0. We denote K(∞) =
⋃

i≥0K
(i).

It is natural to ask whether this tower eventually stabilizes. This was first asked in 1925 by Furtwängler:

Question 1.2 (Class Field Tower Problem). Does the Class Field Tower stabilizes for all number fields K?

In fact, this is an interesting question since it is equivalent to the following other question:

Question 1.3 (Embeddability Problem). Does any number field K admit an extension L/K of number fields such

that the class number of L is 1?

Proposition 1.4. The Class Field Tower problem and the Embeddability Problem are equivalent.

Proof. (⇒) : If the Class Field Tower of K stabilizes at K(n), then this means |ClK(n) | =
[
K(n+1) : K(n)

]
= 1, hence

we can take L = K(n).

(⇐) : If we have L/K with |ClL| = 1, then L is its own Hilbert Class Field. Inductively, we get K(n) ⊆ L(n) = L.

Since [L : K] is finite, we conclude that the Class Field Tower must stabilize. �

In 1964, these problems were solved in the negative by Evgeny Golod and Igor Shafarevich. Their proof, with some
refinements, yields the following:

Theorem 1.5 (Golod-Shafarevich). If K is an imaginary quadratic field with at least 5 distinct odd primes dividing

its discriminant, then K has an infinite Class Field Tower.

This gives counter-examples such as Q(
√
−3 · 5 · 7 · 11 · 13).

After this, several other counter-examples were constructed, such as by means of the following theorem.

Theorem 1.6 (Brumer). Let K/Q be Galois, of degree n. Let k be the number of infinite places of K, and p be a

prime p | n. Let tp be the number of primes ramified in K with the ramification index a multiple of p. Then K has an

infinite Class Field Tower if

tp >
k − 1

p− 1
+ νp(n)δp + 2 + 2

√
k + δp,

where δp = 1 if the p−roots of unity are in K and 0 otherwise.

For instance, any quadratic real field with at least 7 > 4 + 2
√

2 ramified primes has infinite Class Field Tower.
However, all the results currently known use the Golod-Shafarevich inequality 2.4 as one use its tools.
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2. Outline of the Proof

Definition 2.1. We call an extension of number fields L/K a p−extension if it is Galois and [L : K] is a power of p.

Lemma 2.2. If K is a number field with finite Class Field Tower, there is a maximal unramified p−extension of K.

We denote it by Kp. Moreover, Kp has no nontrivial unramified p−extension.

Proof. Note K(∞) is the maximal solvable unramified extension of K 1. Since a p−group is solvable, we must have

L ⊆ K(∞) for any p−extension L/K. So if G = Gal
(
K(∞)/K

)
, we need to prove there is a minimal normal subgroup

N E G such that [G : N ] is a power of p. This is true for any finite group G, and follows once we prove that if N1, N2

are two such subgroups, then so is N1 ∩N2. If N1, N2 are two such subgroups, then N1N2 is a subgroup of G of order
|N1|·|N2|
|N1∩N2| ,

2 we have that N1 ∩N2 is still normal, and

[G : N1 ∩N2] =
|G| · |N1N2|
|N1| · |N2|

=
[G : N1] · [G : N2]

[G : N1N2]
| [G : N1] · [G : N2]

which is a power of p. Hence N1 ∩N2 also defines a p−extension. So Kp is well defined.

Suppose L/Kp is an unramified p−extension. LetM/K be the Galois closure of L/K. ThenM/K is also unramified.

If L1, . . . , Lk are the conjugates of L, then we have [M : K] |
∏k

i=1 [Li : K] = [L : K]
k
, which is a power of p. Hence

M/K is a p−extension, which implies L ⊆M ⊆ Kp. Hence L/Kp is a trivial extension. �

So if we construct number fields K such that Kp/K is infinite, then its Class Field Tower is infinite. This is done
by the two theorems that follow.

Notation. If G is a p−group, we denote d(G) = |H1 (G,Fp)| and r(G) = |H2 (G,Fp)| where the action of G in Fp is

the trivial one.

Theorem 2.3 (Iwasawa). If we have an unramified p−extension L/K of number fields, such that L has no unramified

Galois extension of degree p, then we have, for G = Gal (L/K) ,

r(G)− d(G) ≤ r + s.

Theorem 2.4 (Golod-Shafarevich). If G is a nontrivial finite p−group, then

d(G)2

4
< r(G).

Now suppose for instance that K is a quadratic imaginary field, so that r = 0 and s = 1. Assume that K2/K is
finite. We let G = Gal

(
K2/K

)
. If N distinct odd primes divide DK , then we can see that d(G) ≥ N. Indeed, for any

pi | DK odd, we consider Li = Q(
√
p?i ). Then Li ⊆ K2, so it defines a map ϕi : G� G/Gal

(
K2/Li

) ∼−→ F2 which we
can see as an element of H1 (G,F2) . They are linearly independent, since if gi ∈ G \ Gal

(
K2/Li

)
, then ϕj(gi) = δij .

Since H1 (G,F2) ' H1 (G,F2) , 3 we conclude that d(G) ≥ N.
Then d(G)2 < 4r(G) ≤ 4(1 + d(G)), so d(G)2 − 4d(G)− 4 < 0, which is not true for d(G) ≥ 5. Hence if N ≥ 5 we

have a contradiction, which forces the Class Field Tower of K to be infinite.

1 To see that K(∞)/K is Galois, we use that: If L/K is a Galois extension of number fields, and H is the Hilbert Class Field of L,

then H/K is Galois. Indeed, if σ fixes K, then σL = L and so σH/L is an unramified abelian extension of L, hence σH ⊆ H =⇒ σH = H.

2That |N1N2| = |N1|·|N2|
|N1∩N2|

is a simple counting. If ni ∈ Ni, then n2n1 = n−1
1 (n1n2)n1 ∈ n−1

1 N1N2n1 ⊆ (n−1
1 N1n1)(n

−1
1 N2n1),

hence N2N1 ⊆ N1N2. Analogously, we have the other containment. Hence N1N2 = N2N1. Then it follows easily that N1N2 is a group.

3 We have H1 (G,F2)
∼−→ Gab ⊗Z F2 and H1 (G,F2)

∼−→ Hom(Gab,F2), both counting the number of quotients of Gab of size 2.
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3. Proof of Iwasawa’s Theorem

Notation. For any abelian group H, we denote H(p) = H/pH.

Lemma 3.1.

dimFp
H2 (G,Z)(p) = r(G)− d(G).

Proof. Consider the exact sequence 0→ Z p−→ Z→ Fp → 0 and its corresponding long exact sequence in homology

H2 (G,Z)(2) → H2 (G,Fp)→ H1 (G,Z)→ H1 (G,Z)→ H1 (G,Fp)→ 0

where the 0 at the end is because the last three terms split. Since H1 (G,Z) ' Gab is finite, we may compute dimensions

and we obtain

dimFp H2 (G,Z)(p) = dimFp H2 (G,Fp)− dimFp H1 (G,Fp) = r(G)− d(G).

�

Notation. Denote UK = {(ap)p ∈ IK : ap is a unit for all p finite} = Ker (IK → IK) and UK = UK ∩K×, so that UK

is the group of units of K.

Then we have two exact sequences:
0→ UL/UL → CL → ClL → 0

0→ UL → UL → UL/UL → 0

By Class Field Theory, the fact that L has no unramified Galois extension of degree p is equivalent to the fact that
p - |ClL|. As G is a p−group, we conclude that

Ĥn (G,ClL) = 0 for all n ∈ Z.4

Since L/K is unramified, we have that the Ĥn (G,UL) all vanish5. Considering the long exact sequence induced by
the two exact sequences above, we have for all r,

Ĥr (G,UL/UL)
∼−→ Ĥr (G,CL)

Ĥr (G,UL/UL)
∼−→ Ĥr+1 (G,UL)

and thus Ĥr (G,CL)
∼−→ Ĥr+1 (G,UL) for all r ∈ Z. The Main Theorem of Class Field Theory reads Ĥr−2 (G,Z)

∼−→
Ĥr (G,CL) for all r ∈ Z.6 Hence we deduce

Ĥr−2 (G,Z)
∼−→ Ĥr+1 (G,UL) for all r ∈ Z.

In particular, for r = −1 we obtain

H2 (G,Z)
∼−→ Ĥ0 (G,UL) = UK/NmL/K(UL),

and hence
H2 (G,Z)(p)

∼−→
(
UK/NmL/K(UL)

)
(p)
.

Taking dimensions, we get, by the lemma above,

r(G)− d(G) = dimFp
(
(
UK/NmL/K(UL)

)
(p)

) ≤ dimFp
((UK)(p)).

Since by the Unit Theorem we have UK ' µK · Zr+s−1, so we get r(G)− d(G) ≤ r + s− 1 + δK ≤ r + s.

4This holds since we saw in class that Ĥn (G,ClL) is |G|−torsion. Moreover, since ClL is |ClL|−torsion, so is Ĥn (G,ClL) . So it is

gcd(|G|, |ClL|) = 1−torsion. Hence Ĥn (G,ClL) = 0.

5 Since Ĥn (G,UL) = lim−→
∏

p∈S Ĥn
(
GP,O×LP

)
, it suffices to prove Ĥn

(
GP,O×LP

)
= 0. Since GP is cyclic, it suffices to prove for

n = 0 and n = 1, which was done in class.
6 We did not prove this in class, but it follows by Tate’s theorem once one proves Ĥ2 (G,CL) is cyclic of order [L : K] . For example,

for G cyclic, we have Ĥ2 (G,CL)
∼−→ Ĥ0 (G,CL)

∼−→ Gab = G which is cyclic of the right order.
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4. Proof of Golod-Shafarevich Inequality
For this entire section, G will denote a finite p−group. Remember that for a G−module A, we denote AG = H0 (G,A) =
A/IGA where IG is the augmentation ideal.

Lemma 4.1. If A is a finite G−module with pA = 0, then AG = 0 ⇐⇒ AG = 0 ⇐⇒ A = 0.

Proof. Let A′ = Hom(A,Fp). Then (A′)G = Hom(AG,Fp) and (A′)G = Hom(AG,Fp). So we only need to prove

AG = 0 =⇒ A = 0. Consider the action of G in A. Then AG = 0 means that it has exactly one orbit of size 1. Since

all other orbits are of size powers of p, we have |A| ≡ 1 mod p. Since A is a Fp−vector space, this implies A = 0. �

Lemma 4.2. Let A be a finite G−module with pA = 0. Let a1, . . . ar be a basis of AG as a Fp−vector space. Then

they also generate A as a G−module.

Proof. Let B be the submodule generated by the ai. Then the sequence 0→ B → A→ A/B → 0 induces

· · · → BG → AG → (A/B)G → 0.

As BG → AG is a surjection, we get (A/B)G = 0, so A = B by the above lemma. �

Notation. We denote Λ = Fp[G].

Lemma 4.3. Let A be a finite G−module with pA = 0. Then there is a resolution

· · · ∂−→ Λb2 ∂−→ Λb1 ∂−→ Λb0 → A→ 0

such that bi = dimFp(Hi (G,Fp)) and such that ∂(Λbn+1) ⊆ IGΛbn .

Proof. By the above lemma, we have the epimorphism Λb0 � A. Consider the exact sequence 0→ B → Λb0 → A→ 0.

Since Λb0 is an induced G−module, all its homology groups for i ≥ 1 vanish. The long exact sequence in homology

then becomes

· · · → 0→ H2 (G,A)→ H1 (G,B)→ 0→ H1 (G,A)→ H0 (G,B)→ H0

(
G,Λb0

)
→ H0 (G,A)→ 0.

In fact, H0

(
G,Λb0

)
→ H0 (G,A) is an isomorphism, since it is a surjection between Fp−vector spaces of same

dimension b0. This implies that Hi+1 (G,A)
∼−→ Hi (G,B) for all i ≥ 0 and also that H0 (G,B) → H0

(
G,Λb0

)
is the

zero map. Repeating the above argument, we get a surjection Λb1 � B. Then we can define Λb1 ∂−→ Λb0 to be the

composition Λb1 � B → Λb0 .

Λb1 Λb0 A 0

B

0 0

∂

Note that ∂(Λb1) = Im
(
B → Λb0

)
= Ker

(
Λb0 → A

)
, so the top row is exact.

Moreover, since H0 (G,B)→ H0

(
G,Λb0

)
is the zero map, we have Im

(
B → Λb0

)
⊆ IGΛb0 . Hence ∂(Λb1) ⊆ IGΛb0 .

Continuing with this process in B, we get the desired resolution. �
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Definition 4.4. Let A be a finite G−module such that pA = 0. Denote ci(A) = dimFp
IiGA/I

i+1
G A. Then the Poincaré

Polynomial of A is PA(t) =
∑

n≥0 cn(A)tn. Note that since A is finite, this is indeed a polynomial.

Proof of Golod-Shafarevich. Let d = d(G) = dimFp
H1 (G,Fp) and r = r(G) = dimFp

H2 (G,Fp) .

By the lemma above applied to A = Fp, we have a resolution

· · · ∂−→ Λr ∂−→ Λd ∂−→ Λ→ Fp → 0,

where we can take the map Λ→ Fp to be the augmentation map. By letting E = IGΛ, D = Λd, R = Λr, we can write

this sequence as

R
∂−→ D → E → 0.

Since ∂(R) ⊆ IGD, this induces the sequence

InGR
∂−→ In+1

G D → In+1
G E → 0

and hence induces

R/InGR
∂−→ D/In+1

G D → E/In+1
G E → 0.

This last sequence is exact since we have

Ker
(
D/In+1

G D → E/In+1
G E

)
= Ker (D → E) mod In+1

G D = Im
(
R

∂−→ D
)

mod In+1
G D = Im

(
R/InGR

∂−→ D/In+1
G D

)
.

Note the first equality is true since D → E is surjective. From the exactness we obtain sn(D) ≤ sn(E) + sn−1(R),

where sn(A) =
∑

0≤i≤n ci(A) = dimFp
(A/In+1

G A) for a module A.

Since IiGE/I
i+1
G E = Ii+1

G Λ/Ii+2
G Λ, and Λ/IGΛ = Fp, we have that PE(t) = P (t)−1

t where P (t) = PΛ(t). Moreover,

we clearly have PD(t) = dP (t) and PR(t) = rP (t). Using that for 0 < t < 1 we have 1
1−tPA(t) =

∑
n≥0 sn(A), the

above inequality implies that

PD(t) ≤ PE(t) + tPR(t) ⇐⇒ dP (t) ≤ P (t)− 1

t
+ rtP (t) ⇐⇒ P (t)(1− dt+ rt2) ≥ 1.

Since P (t) has positive coefficients, this implies that 1− dt+ rt2 > 0 for all 0 < t < 1. By 3.1, we have d ≤ r < 2r,

so for t = d
2r this reads r > d2

4 . �
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5. Sketch of Proof of Brumer’s Theorem
As before, we assume that K has finite Class Field Tower and let G = Gal

(
K(∞)/K

)
. Note that we have ClK

∼−→
Gal

(
K(1)/K

)
= Gab and

H1 (G,Fp) ' H1 (G,Fp) = Hom(G,Fp) = Hom(Gab,Fp) ' Hom(ClK ,Fp) = Hom((ClK)(p),Fp),

which has the same size as |(ClK)(p)|, so in fact d(G) = dimFp
(ClK)(p).

So the theorem follows from Iwasawa’s, Golod-Shafarevich’s and the inequality

dimFp(ClK)(p) ≥ tp −
(
k − 1

p− 1
+ νp(n)δp

)
.

Now let G? = Gal
(
K(1)/Q

)
and G = Gal (K/Q) . We have the inflation-restriction exact sequence

0→ H1 (G?/G,UK(1))→ H1 (G?, UK(1))→ H1 (G,UK) .

By comparing dimensions in this formula, we are done if we prove that:

(5.1) H1 (G?/G,UK(1)) ' ClK ,

(5.2) dimFp
(H1 (G?, UK(1)))(p) = tp,

(5.3) dimFp(H1 (G,UK))(p) ≤
k − 1

p− 1
+ νp(n)δp.

Lemma 5.1. Let L/K a Galois extension of number fields with Galois group G. If IGL ⊆ PL, then we have a natural

exact sequence

0→ ClK → H1 (G,UL)→ H1 (G,UL)→ 0.

Proof. We have the following exact and commutative diagram

0 0 0

0 UL UL UL/UL 0

0 L× IL CL 0

0 PL IL ClL 0

0 0 0

which induces the following exact commutative diagram in cohomology, where we use Hilbert 90
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0 0 0

0 UK UK (UL/UL)G H1 (G,UL) H1 (G,UL)

0 K× IK CK 0

0 PG
L IGL ClGL

H1 (G,UL) H1 (G,UL)

0 0

We need to prove H1 (G,UL)
ϕ−→ H1 (G,UL) is surjective with kernel ClK .

The hypothesis imply PG
L = IGL , so that we get at once from the bottom of the diagram that the ϕ is surjective.

Since the map IGL → ClGL is the zero map, a diagram chasing implies that CK → ClGL is also 0, so that (UL/UL)G → CK

is an isomorphism. Then

Ker (ϕ) = Im
(
(UL/UL)G → H1 (G,UL)

)
= (UL/UL)G/Im

(
UK → (UL/UL)G

)
'

' CK/Im
(
UK → (UL/UL)G → CK

)
= CK/Im (UK → IK → CK) = CK/UK = IK/(K× · UK) = IK/K

× = ClK .

�

Proof of equation 5.1. Apply the lemma 5.1 above for the extension K(1)/K of Galois group G′ = Gal
(
K(1)/K

)
. Note

that IG
′

K(1) ⊆ PK(1) is the Principal Ideal theorem of the Hilbert Class Field. Since K(1)/K is unramified, we have that

H1 (G′,UK(1)) = 0. Then the lemma implies the equation we want since G′ = Gal
(
K(1)/K

)
= G?/G. �

Proof of equation 5.2. We apply the lemma 5.1 forK(1)/Q.We have IG
?

K(1) ⊆ IGK(1) ⊆ PK(1) , so the theorem applies. The

lemma gives us an isomorphism H1 (G?, UK(1))
∼−→ H1 (G?,UK(1)) =

∏
p Z/eK(1)/Q(p)Z. Since K(1)/K is unramified,

then eK(1)/Q(p) = eK/Q(p). Then the equation follows easily. �

Lemma 5.2. Let G a finite group of order n and p a prime. Let A be a G−module which is a finitely generated abelian

group. Then

dimFp(H1 (G,A))(p) ≤ νp(n) dimFp
A(p).

Sketch of Proof. Since the restriction map to a Sylow p−group P is injective on the p−primary components, we have

that

dimFp(H1 (G,A))(p) ≤ dimFp(H1 (P,A))(p).

So it suffices to consider G a p−group.

Let g1, . . . , gd be a minimal generating set of G. Then we have d ≤ νp(n) by Burnside Basis Theorem. Then every

crossed homomorphism f ∈ Z1(G,A) is determined by the image in the gi. Hence we have an injection Z1(G,A) ↪→ Ad.
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Hence we have

dimFp
(H1 (G,A))(p) ≤ dimFp

(Ad)(p) ≤ ddimFp
A(p) ≤ νp(n) dimFp

A(p).

�

Remark 5.3. The stronger inequality

dimFp(H1 (G,A))(p) ≤
r

p− 1
+ νp(n) dimFp(Ator)(p)

(where r is the rank of A) that we need for Brumer’s theorem is proved by separating the cases of torsion and free

modules, and proving a stronger inequality for the free module case.

Proof of equation 5.3. By Dirichlet’s unit theorem, we have that UK ' µK · E, where E is a free abelian group of k

generators. Then the equation follows from the previous lemma 5.2 and the following remark for the full theorem. �

Without the improvements in 5.2, the bound we got implies the following weaker version of Brumer’s theorem:

Theorem (Brumer). Let K/Q be Galois, of degree n. Let k be the number of infinite places of K, and p be a prime

p | n. Let tp be the number of primes ramified in K with the ramification index a multiple of p. Then K has an infinite

Class Field Tower if

tp > νp(n)(k + δp) + 2 + 2
√
k + δp,

where δp = 1 if the p−roots of unity are in K and 0 otherwise.

Corollary 5.4. There is a constant c(n) such that, if K/Q is a Galois extension of number fields of degree n, then K

has infinite Class Field Tower if the number of distinct primes ramified in K/Q is greater than c(n). In fact, we can

take

c(n) = Ω(n)n+ (2 + 2
√
n)ω(n)

by the weak form of Brumer’s theorem we proved, or even

c′(n) =
∑
p|n

n− 1

p− 1
+ Ω(n) + (2 + 2

√
n)ω(n) < 3 · n · ln ln lnn

for n sufficiently large by the stronger form of Brumer’s theorem.
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