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PROBLEM SETS

1. 04/09/2019

Goal: study interesting comutative rings using the language of category theory, and geometryic

intuition when appropriate.

Rings are commutative.

Example 1.1. The following are rings

(
(
(
(

1
2
3

fields,

rings of integers in number fields,

quotients, etc.

4) k[t] for a (algebraically closed) field k (regular functions on the affine line A1), k[t1,. .., t,],

1.1. Universal properties.

Definition 1.2. Given a ring A and an ideal I C A, the quotient ring is a ring A/I, equipped

with ring homomorphism A — A/I, sending I to 0, and such that for any other wing B and a map

A — B Kkilling I, then there is a unique map f: A/I — B such that

A—— A/l

N


https://dspace.mit.edu/bitstream/handle/1721.1/116075/COMMALG_13Ed_031118_AKCCBYNCSA.pdf?sequence=1
https://learning-modules.mit.edu/class/index.html?uuid=/course/18/fa19/18.705
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Remark 1.3. By general category theory such A/I is unique up to unique isomorphism.
Definition 1.4. Let A be a ring. The polynomial algebra in one variable over A is an A-algebra

A[t] equipped with a distinct element ¢t € A[t] such that for any other such pair (B,b), there is a

unique map f: A[t] — B with

A—— Alt] ¢t
N
B b

Remark 1.5. It generalizes to any set indexing the variables.

Definition 1.6. Let A;, and A; be rings. The product ring A, X A equipped with homomorphisms
pit A1 x Ay — A; for i € {1,2} such that for an other such ring P, there is a unique map
f: P — A; x Ay such that

P
Js
p1 P2
A1 X A2

N
Ay Ao
Remark 1.7. Generalizes to any index set I.
Remark 1.8. In Ay x As, one has idempotents e; := (1,0) and ey := (0,1). Conversely, if A is a

ring with an idempotent e € A, then

A—— A1 X A2
a — (ae,a(l —e))

where A; := Ae and Ay := A(1 — e) with identities e and 1 — e.

Warning 1.9. There is no such thing as a direct sum of rings (A — A x B is not a ring homo-

morphism).

2. 6/09/2019

Definition 2.1. Given ideals I and J, we define the colon ideal or transporter
(I:J)={a€A:aJ CI}.

Definition 2.2. A subset S C A is multiplicative if S is closed under finite products.
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Definition 2.3. An ideal p is prme if A\ p is multiplicative.
Definition 2.4. We define the spectrum Spec A to be the set of all prime ideals.
Proposition 2.5. A ring homomorphism A — B induces a map Spec B — Spec A.

Proposition 2.6. An ideal I C A is mazimal if and only if A/I is a field, and prime if and only
if A/I is a domain.

Definition 2.7. Given a domain A, its fraction field Frac(A) is universal among fields F' equipped

with an injective ring homomorphsim A — F.

Definition 2.8. Given a domain A and P = Alt;], we denote the order of vanishing ordf to the

minimum of the degree of the monomials.

Definition 2.9. If K is a field, we denote the field of rational functions K(t;) to be the fraction
field of K|[t;].

3. 09/09/2019

Lemma 3.1. Let S be a multiplicative subset of A and I an ideal with INS = 0. Let J ={J D

I: JNS =0} Then J has a mazimal element p, and any such p is a prime ideal.

Proof. For any such p, and any x € p, we have (p+(2))NS £ 0. So A\p = {z € A: p+(2)NS # 0}.

Now the claim is that A \ p is a multiplicative set. O

3.1. Radicals.
Definition 3.2. Let I C A be an ideal. Then /T := {z € A: 2" € I for some n}.
Example 3.3. Is p is prime, then /p =p.

Theorem 3.4. We have

Vi N »

p2I prime
Proof. If p O I, then VI D /b = p. For the other inclusion, consider x ¢ V1. Apply the lemma
with § = {1,2,22,...}, which is disjoint to I. Then we get a prime ideal p D I disjoint to S. This

means x & p. |
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Definition 3.5. For the ideal 0, nil A := /0 is called the nilradical of A, which is the intersection
of all prime ideals.

Definition 3.6. A ring A is reduced if V0 =0.

Definition 3.7. The Jacobson radical of a ring is rad A :=

p maximal p.

Remark 3.8. Later we will prove that if A is a finitely generated algebra over a field or over Z,

then nil A = rad A, which is a version of the Nullstellensatz.

Proposition 3.9. If u € A*, then u+rad A C A*.

Proof. If u+ v € A*, then it belong to a maximal ideal. O
Corollary 3.10. We haverad A ={zx € A: 1 —ax € A* for all a € A}.

Proof. C is clear. Now if x ¢ rad A it is not in some maximal ideal m. Then m + (x) = A, so we

have m + axz = 1 for m € m, which means 1 — ax = m is not a unit. O

Example 3.11. Consider A = k[[t]] for a field k. Consider m = tk[[t]]. Note A* = A\ m, and that

this means A is local, and all ideals are m™ for varying n > 0. So rad A = m and nil A = 0.

Definition 3.12. A ring A with exactly one maximal ideal is called a local ring, and the quotient

A/m is called its residue field.
Definition 3.13. A ring A with finitely many maximal ideals is called a semilocal ring.
3.2. Spectrum.

Definition 3.14. We turn Spec A into a topological space by taking the closed sets to be
V(I):={p prime: p D I}

for ideals I C A. Note V(I)UV(J) =V (INJ)and (", V(L;) = V(>,; I;). This is called the Zariski

topology.

Proposition 3.15. V(I) =0 <= I = A and V(I) = SpecA <= A C nilA. Moreover,
V() =V(J)) <= VI=V1].

Example 3.16. Let k be an algebraically closed field and A = k[t]. Then Spec A is k U {n} with

the profinite topology on k and whose all nonempty open sets contain 7, that is W = Spec A.
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4. 11/09/2019

Definition 4.1. For any subset S C Spec A, we say a point p € Spec A is a generic point for S if
S = {p}.

Proposition 4.2. A point p € Spec A is closed if and only if p is a mazimal ideal.
Proof. This is since {p} = V(p). O

Example 4.3. Let A = k[z,y| for k algebraically closed. Then the points of Spec A correspond

to the ideals of the form (z — a,y — b), to irreducible polynomials and to the zero ideal.

Definition 4.4. A topological space is irreducible if it is nonempty and is not a union of two

proper closed subsets.

Proposition 4.5. The irreducible closed subsets of Spec A are precisely the sets of the form V (p)

for primes p.

Proof. It is easy to see that V(p) is irreducible. Conversely, consider V (I) with I radical and not
prime. If ab € I but a,b € I, then V(I) =V (I + (a)) N V(I + (). O

Definition 4.6. An irreducible component of a topological space X is a maximal irreducible

(closed) subset. The analogous notion in commutative algebra is of a minimal prime.
Theorem 4.7. Let I be an ideal of A. Then
VI=(p
p
where p varies over minimal primes over I.

Proof. Obvious from the previous version and Zorn’s lemma. O

5. 13/09/2019

Proposition 5.1. A is a domain if and only if A is reduced and Spec A is irreducible.

Proof. If A is a domain it is clear. Otherwise, Since Spec A has only on component, it has only

one minimal prime, and it must be v/0 = 0. Hence 0 is prime, that is, A is a domain. (]

Proposition 5.2. Spec is a contravariant functor.
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5.1. Modules.

Definition 5.3. The kernel of f is a pair (K, 4) universal among the pairs such that K L VN
is 0. The cokernel is (C, q) universal among the ones such that M LN % Cis 0. The image of f

is the kernel of the cokernel, and the coimage is the cokernel of the kernel, and they are isomorphic.
Theorem 5.4. If A is a PID, then any submodule of a free A-module is free.

Proof. Let F be a submodule of the free module E. By the axiom of choice, we may take a well

ordered I with E = @,_; A, with projections ;. Let E; = @KiA, and F; = F N E;. Then

iel
i (F;) = (¢;) for some ¢; € A. If ¢; # 0, we choose f; € F; such that m;(f;) = ¢;. Then it is easy to

see that f; form a basis for F. O

6. 16,/09/2019

Proposition 6.1. Given an exact sequence 0 — N = M Sp 0, the following are equivalent:

(1) it is isomorphic to0 - N - N® P — P — 0,
(2) there exist a section s: P — M such that $o s = id,

(8) there exist a retraction r: M — N such that r o a = id.

Lemma 6.2 (Snake lemma). Given a commutative diagram

0 M M M 0
[ ] [
0 N’ N N 0

with exact rows, we get an eract sequence
0 — ker (7') — ker (y) — ker (v"") — coker (y") — coker (y) — coker (") — 0.

Definition 6.3. A presentation of M is an exact sequence F; — Fy — M — 0 with Fy, I} free.
Then M is finitely generated if Fy can be chosen with finite rank, and finitely presented is Fy and

F; can be chosen of finite rank.

Example 6.4. A = k[t,u] and M = (t,u) then A — A? - M — 0 with 2z — (uz,—tz) and

(z,y) = xt + yu.
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7. 18/09/2019

Definition 7.1. For a ring A and a module M, we have functors
Hom(M,-): Moda — Mods and Hom(-, M): Moda — Mod}.

Definition 7.2. For categories €, %, an additive functor F: € — 2 is such that the maps

Hom(A, B) — Hom(F A, FB) are group homomorphisms.

Definition 7.3. For contravariant functors F': € — &, we define left /right exact by applying the
definition to F': €°P — 2.

Theorem 7.4. Both Hom functors are left exact.

Theorem 7.5. Let A be a ring, P a module. The following are equivalent, and when they are true

we say P is projective.

(1) Given M — N and P — N, there is a P — M that is compatible.

P
o
M ——» N

(2) FEvery short exact sequence 0 — K — M — P — 0 splits.
(8) P is a direct summand of a free module.

(4) Hom(-, P) is ezact.

Proof. (1) = (2): Use 1 with P = N to get a section.
(2) = (3): Take M free and use (2).
(3) = (4): Suppose K @ P is free. Then Hom(K @ P,-) is exact, and Hom(K @ P,-) =

Hom(K, -) ® Hom(P,-), so both must be exact, which implies (4).

(4) = (1): Apply Hom(P,-) to 0 - K — M — N — 0, and so in particular Hom(P, M) —
(

Hom(P, N) — 0, which is what we want. |

8. 23/09/2019

Categories, colimits.
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9. 25/09/2019

More on colimits.

10. 27/09/2019

Proposition 10.1. For a colimit thZ in modules of A and N is an A-module, apply Hom(N, )
to the limit. Then we have a map 6: H_I)nHom(N, M;) — Hom(N,li_r}nMi).

K2

Now suppose the limit is filtered.

(1) If N is finitely generated, then 0 is injective.

(2) If N is finitely presented, then 0 is an isomorphism.

Proof of (1). Let ny,...,n,;, be generators of N. Let f € ligHom(N, M;). Say it is represented

by f: N — M;. If 0(f) = 0, then 6(f)(nx) = 0, and this holds in lim M;, so there is a jj. with

f(nk) =0in M, , so there is a j > j, such that f =0¢€ M;,s0 f=0¢ thZ a
i

Theorem 10.2. Filtered colimits preserve exactness.

Proof. The morphisms @Li — h_H)lMl — l£>nNz come from the universal properties and their
1 1 K3

composition is 0. If m € thZ is in the kernel, then it is m € M;, and since it maps to 0, we can
i

further choose ¢ such that M; — N; maps m to 0. This means m is in the image of L; — M;, and

so that it is in the iamge of @Li — hﬂMz O

11. 30/09/2019

Tensors.
Theorem 11.1. For N a (A, B)-bimodule, @ 4N and Hompg (N, -) is an adjoint pair.
Corollary 11.2. ® s N preserves colimits, and is right exact.

Theorem 11.3 (Watts 1960). Any A-linear functor F': Mod4 — Mod 4 that preserves direct sums
and cokernels is isomorphic to @ AP for some P = F(A). In general, if F' does not preserves direct
sums and cokernels, then we only have a natural transformation ©: ®a4 P — F such that O(A) is

the identity.
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12. 02/10/2019

Definition 12.1. For a ring A and an A-module M, let TM, AM =TM/(m ®m) and SymM =

TM/(a®b—b® a) be the tensor algebra, the exterior algebra, and the symmetric algebra.

Example 12.2 (Determinant). If M is a free A-module of rank r, then det M := A" M is free
of rank 1. If f: M — M is a linear map, this induces a map A" f: A" M — A" M, and this is

multiplication by the determinant.

12.1. Flatness.

Definition 12.3 (Serre, ~1955). The functor ® 4 M is always right exact. We call M flat if it is

also left exact.

Lemma 12.4. P, ; M; is flat if and only if all M; are flat.

Proof. Follows from the distributivity of & and ®. ]

Corollary 12.5. Projective modules are flat.

Remark 12.6. ® oM is faithful if and only if N ® M — P ® M being 0 implies N — P to be 0.

Definition 12.7. M is faithfully flat if M is flat and faithful.

Example 12.8. Nonzero free modules.

Proposition 12.9. Suppose 0 — My — My — M3 — 0 with M3 flat. Then tensoring with any N

preserves the exactness. Moreover, My is flat if and only if Ms is flat.
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13. 04/10/2019

Proof. Take a presentation 0 — K — F' — N and tensor the initial sequence, use snake lemma on

the first two rows.

0

|

M1®K*>M2®K4>M3®K4>O

| | |

O%M1®F*>M2®F*>M3®F4>O

l | l

Mi@N —— Ma@N —— M3®@N —— 0

| | |

0 0 0

For the second part, again take any injection N’ — N and tensor it with the initial sequence

and apply the snake lemma. O

13.1. Geometric interpretation of flatness. For a prime p C A, let k(p) = Frac(A/p). We have
A — A/p — k(p), which induces Spec k(p) — Spec A/p — Spec A. Now Spec A/p is an irreducible
closed subset of Spec A, with Spec k(p) mapping to its generic point.

Now given a module M, we a family of vector spaces M ®4 k(p). M being flat is kinda of
equivalent to M ® k(p) being well-behaved over p. Faithfully flat is kinda of equivalent to M ® k(p)
being well-behaved and non zero (if M is a A-algebra, this is the same as the projection being

surjective).

Theorem 13.1 (Lazard’s Theorem). M is flat if and only if it is a filtered colimit of free modules
of finite rank.

13.2. Cayley—Hamilton.
Theorem 13.2 (Cayley—Hamilton). Let A be a ring, and X € M, (A). Then det(TI—-X)(X) =0
Proof. Prove for the generic matrix by choosing an embedding to C and diagonalizing. |

Theorem 13.3 (Determinant trick). For A a ring and a finitely generated module M with an
endomorphism ¢: M — M, Choose a basis of M and write ¢ as a matriz X. Then Px(¢) =0 €
End(M).

Proof. Just note that it is true for free modules, and hence for its quotients. O
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14. 07/10/2019

Lemma 14.1. Let M be a finitely generated A-module, and I C A an ideal. If M = IM, then
there is b € I such that (1 4+b)M = 0.

Proof. Choose generators m; of M, and write relations m; = ., a;;m; with a;; € I. Then use

Cayley—Hamilton. O

Lemma 14.2 (Nakayama’s lemma). Let A be a ring, I C rad(A) be an ideal. Then for a finitely
generated module M, M = IM implies M = 0.

Proof. Apply the lemma. There is b € I with (1+0)M = 0. But 1 +b is a unit, hence M =0. O

Corollary 14.3. Let A be a local ring with maximal ideal m, and M a finitely generated module.
Consider my, ..., my. Then m; generate M if and only if they generate M /mM.

Proof. Let N be the module generated by the m;. Let @ = M/N. Then we have an exact sequence
N/mN — M/mM — Q/mQ@Q — 0. Now by Nakayama, Q/m@Q = 0 if and only if @ = 0, which is

what we want. O

Remark 14.4. There is an analogue in group theory: if G is a p-group, g; generate G if and only

if they generate the Frattini quotient G/(GP[G, G]).

Proposition 14.5. Let A be a ring and M an A-module. Then free = projective —> flat.
Moreover, they are all equivalent if A is local and M is finitely presented.

Also, for a projective module, finitely generated = finitely presented.

Proof. Supose A is local and m is the maximal ideal, with k¥ = A/m. Let M be a flat finitely
presented A-module. Choose a basis m; for M ® k, and choose lifts m;. By Nakayama, m,; generate
M. Since M is finitely generated, there are finitely many m;. So we have a map A™ — M — 0.
Since M is finitely presented, we may choose this such that 0 — L — A™ — M — 0 with L finitely
generated. Tensoring with k, and using that M is flat, we conclude L ® k = 0. By Nakayama again,
we conclude L = 0.

For the second claim, let M be finitely generated projective. Doing the same thing as above,
0—L— A" - M — 0is split. Then A™ — L giving the splitting is surjective, and so L is finitely

generated. O
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14.1. Integral extensions.
Definition 14.6. A aring, B an A-algebra. Then x € B is integral if x satisfies a monic equation.

Proposition 14.7. x is integral if and only if A[zx] is generated as a A-module, if and only if x is

contained in an A-subalgebra C C B that is finitely generated as a A-module.

15. 09/10/2019

Proof. All is easy, except that the last one implies integrality, but this follows from the determinant

trick. O

Definition 15.1. The integral closure (or normalization) of A over B is the ring of integral

elements over B.

Example 15.2. A = k[t 3] is not normal.
16. 11/10/2019
17. 16/10/2019

18. 18/10/2019

We will establish
M has property P <= M, has property P for all maximal ideals m

for several P.

Proposition 18.1. P ="is trivial”.

Proof. Take s € M nonzero, and consider a maximal ideal that contains Ann(s). O
Proposition 18.2. P ="exactness".

Proof. Follows from the above and the exactness of localization. O
Proposition 18.3. P ="flatness".

Proof. Follows from the above and the fact that localization and tensor commute. O

Corollary 18.4. A module finitely presented M is flat if and only if it is locally free if and only

if it is projective.
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19. 21/10/2019

19.1. Cohen—Seidenberg theory. Setup: A’/A integral extension.
Lemma 19.1. Suppose A, A" are domains. Then A’ is a field if and only if A is a field.

Proof. For x € A, q/x € A’ is integral over A, and then we can use this to produce an inverse.
Conversely, is A is a field, we consider a minimal polynomial for any element y € A’, and by

inverting the constant term let us write an inverse of y. |

Definition 19.2. We say p’ C A’ lies over p C A if p = p’ N A. Equivalently, if p’ maps to p in
Spec A’ — Spec A.

Theorem 19.3. If p'/p, then p’ is maximal if and only if p is mazimal. If p},ph are two such
distinct primes, no one is contained in the other. Given p and I C A" with I N A C p, then there

1s such p’ with I C p’.

Proof. The first statement follows from the lemma for A/p C A'/p’.

Now localize at S = A —p C A’ — p’. Then p becomes maximal, and now it follows from the
first statement.

Again localize to assume A is local with maximal ideal p. Then take a maximal ideal of the

extension containing I. It must lie over p since it is the only maximal ideal. O

Proposition 19.4. Let L = FracA’, K = FracA. Thenl € L is in A" if and only if its minimal

polynomial has coefficients in A.

Theorem 19.5 (Going down theorem). Suppose A, A’ are domains, with A normal. Given q'/q

and p C q, there is a p’ lying over p and with p’ C q'.

20. 23/10/2019

Proof. Consider the minimal polynomial F,, € KJz] of ' € K’ := FracA’. We can prove that if
a' € A, the F,, € Alz]. If in addition @’ € pA’, then we can prove F,s € 2" + a,_ 12"t + - +ag
with a; € p.

Now consider pAj, N A. It contains p, but if a is an element of it not in p, we have a = a’/s’
with @’ € pA’ and s’ € A’ — ¢q'. Then a"Fy (z) = F, (ax). By the above, this has coefficients in p,

and so the same is true for Sy . So s’ € p, which is a contradiction. Hence pA;, NA=p.
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Now let p” be a ideal maximal along the ones of A}, containing pAj and disjoint from A — p.

This exists by the above. We can prove this is a prime ideal, and p” N A = p. Now p’ = A'Np”. O

Theorem 20.1 (Noether normalization). Let k be a field, A a finitely generated k-algebra, and
L C I, C--- CI. CA are ideals, then there are algebraically independent t1,...,t,, € A such

that A is module-finite over P :=kl[t1, ..., ty], and for each i, I; N P = k[t1,...,t].

21. 25/10/2019

Missed

Proof and applications of Noether normalization.

Theorem 21.1. If A is a fnitely generated k-algebra for a field k, then if A is a field, then A is

a finite extension of k.

22. 28/10/2019

Theorem 22.1. If A is a finitely generated k-algebra, then v/0 = rad A.

Proof. Suppose f € v/0. Then Spec Ay has the points p Z f, so Spec Ay # 0, so Ay # 0. Choose a
maximal ideal m of Ay. Then look at A — Ay — Ay/m, and this get us an ideal m C A, and we
have a map A/m — A;/m. Now Ay is finitely generated k-algebra, so Ay/m is a finite extension of
k by the previous theorem. Hence A/m is a finitely generated k-vector space, hence integral over

k. This implies that A/m is a field. Now we can see that f ¢ m. O

Theorem 22.2 (Hilbert Nullstelensatz). Let A be a finitely generated k-algebra, and I an ideal of
A. Then
Vi=(m

m2J

Proof. Apply the previous theorem to A/I. O

22.1. Dimension theory.

Definition 22.3. Given a field extension L O k, let T be a maximal algebraically independent

subset of L over k. Then we denote tr.deg(L/k) = #T the transcendental degree of L/k.

Example 22.4. If L is a finitely generated as a field extension over k, then tr.deg(L/k) is finite,

and L/k(T) is a finite extension.
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Lemma 22.5. Let A be finitely generated k-algebra which is a domain. Let K = FracA. Let
d := tr.deg(K/k). Suppose we have a chain of prime ideals po C -+ C p,. Then supr = d, and

r =d if and only if the chain is mazimal.

Proof. Let T; = (t1,...,tq). Then we Noether normalization, p; N P are contained in the chain
Ty C --- C Ty, and they are distinct by incomparability. Hence r < d. Moreover, we will use the
going up/down to extend the chain. We of course assume po = 0 and p, maximal, which implies
that p,. N P = Ty. Suppose i is the smallest index with p; N P # T;. Then apply going down to

A/p;_1 over P/T;_1, since the bottom one is a domain (is a polynomial ring over k). g
Definition 22.6. For any A # 0 ring, we define its dimension as supr for po C ---p, C A.

Theorem 22.7. If A is a finitely generated k-algebra that is a domain, then for p € Spec A, we

have dim A, + dim A/p = dim A. In particular, if m is a mazimal ideal, dim Ay, = dim A.

23. 30/10/2019

Theorem 23.1. Let A be a finitely generated k-algebra. Consider p C q primes of A. Then every

mazimal chain of primes between them have the same length,

Proof. We may assume p = 0, but then A is a domain, and we are done by the above. O

23.1. Noetherianess.

Definition 23.2. A commutative ring A is Noetherian if one of the following equivalent conditions

hold.

(1) Every ideal is finitely generated.
(2) A satisfies the ascending chain condition (I; C I C - - - stabilize).

(3) For any set of ideals .S, there is a maximal element.

Definition 23.3. A commutative ring A is Artinian if one of the following equivalent conditions

hold.

(1) A satisfies the descending chain condition (I; D Iy D - - stabilize).

(2) For any set of ideals S, there is a minimal element.
Proposition 23.4. Quotients an localizations of Noetherian rings are Noetherian.

Lemma 23.5. If A is Noetherian, then so is Alz].
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Proof. Let I be an ideal of A[z]. Let I,, = {f € I: deg f = n} and L,, = {le(f): f € I,} U{0}.
Then L, is an ideal, and L, _1 C L,. Since A is Noetherian, they stabilize to L. This proves that
there is n such that I,, generate I. Now choose polynomials that generate each L,, for m < n.

They generate A[z]. O

Theorem 23.6 (Hilbert basis). Let A be Noetherian, and B a finitely generated A-algebra. Then

B is Noetherian.
Proof. This follows from the two previous results. O

Definition 23.7. For a ring A and a module M, M is called Noetherian if one of the following

equivalent statements hold.

(1) Every submodule of M is finitely generated.
(2) Satisfies the ascending chain condition.

(3) Every subset of submodules has a maximal element.

Remark 23.8. A is Noetherian if anf only if it is Noetherian as an A-module. One can also define

an Artinian module.
Proposition 23.9. Noetherianess and finitely-generatedness of modules is stable under extensions.

Proposition 23.10. Let A be Noetherian and M an A-module. Then M is Noetherian if and

only if M 1is finitely generated if and only if it is finitely presented.

Lemma 23.11. Consider A C B C C rings. Suppose A is Noetherian, C is a finitely generated
A-algebra and C is integral over B. Then B is a finitely generated A-algebra.

Proof. C is a finitely generated integral B-algebra, so C' is finitely generated as a B-module. Write

C = Aley,...,cm| = Bcy + -+ Bc,

n’

and write ¢; = Zj bijc;- and c;c;- =>4 bijrc).
Let By = Albij, bijx] a finitely generated A-algebra. Then C' = By + Boc} + - - - + Boc),, since it
contains ¢; and is closed under multiplication by ¢;. Now C'is a Noetherian Bp-module, and B is

a finitely generated Bp-module since it is a submodule of C. This implies B is a finitely generatd

A-algebra. |
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24. 31/10/2019

Theorem 24.1 (Noether’s theorem on invariant subrings). Let k be a Noetherian ring, A a finitely
generated k-algebra, and G C Autg_q,A a finite group. Then A% is also a finitely generated algebra

over k. (Slogan: finite quotients of varieties are varieties)
Example 24.2. A = k[z1,...,2,], G = Sy, then A® ~ k[y1,..., yn].
Proof. We just need to check that A is integral over A%: an element a is a root of [[eq(z—ga). O

Lemma 24.3 (Noetherian induction). Let X be a Noetherian space, and & a property of closed
subsets of X. Assume that whenever & holds for all proper Z C'Y, then & holds for Y. Then &

holds for any closed subset.

Theorem 24.4 (Chevalley’s theorem). Let A — B be a homomorphism between finitely generated
k-algebras where k is Noetherian. Then Spec B — Spec A maps constructible sets to constructible

sets.
24.1. Associated primes.

Definition 24.5. For a ring A and module M, a prime p is an associated prime of M if it is
p = Ann(m) for some m € M. Equivalently, M contains a submodule isomorphic to A/p. We

denote the set of associated primes by Ass M. If T is an ideal, we denote Ass T := Ass(A/I).

25. 04/11/2019
Proposition 25.1. If0 — My, — My — M3 — 0, then Ass M} C Ass My C Ass M7 U Ass Ms.

Proposition 25.2. If A is Noetherian or M is Notherian, then
z.divM = U .
pEAss M
Proposition 25.3. Ass M C U,casn V(P) € Supp M C V(Ann M. We have = in the third if
A or M is Noetherian and in the fourth if M is finitely generated.

Also, If A or M is Noetherian, then the minimal elements of Supp M are associated primes.

26. 06/11,/2019

Lemma 26.1. Let M be Noetherian. Then there is a chain 0 = My C My C --- C M,, = M such
that M;/M;_1 ~ A/p; for some primes p;. For any such chain, Ass M C {p1,...,pn} C Supp M.
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Proof. If M # 0, then Ass M # (), so we have A/p; — M, so that is M;, and then repeat the
process to the quotient. This process terminates since M is Noetherian.

Now the second part of the claim follows from the statement about Ass M under exact sequences.

O

Corollary 26.2. If M is Noetherian, then Ass M 1is finite.

Example 26.3 (Geometric interpretation). Assume M is Noetherian finitely generated. Then

Supp M is closed, and
Ass M = {minimal assoc. primes} L {nonminimal assoc. primes}

SO

Ass M = {minimal primes containing Ann M} L {embedded primes}

which is

Ass M = {irreducible components of M} U {embedded components}

26.1. Primary decomposition. For this entire section, A is Noetherian, and M is a finitely

generated A-module.

Definition 26.4. A submodule N C M is p-primary if Ass M/N = {p}. We say it is primary if it

is p-primary for some p.

Definition 26.5. M is coprimary if Ass M is a singleton. Equivalently, 0 C M is primary.

Proposition 26.6. A finite intersection of p-primary submodules of M is p-primary.

Proof. If N1, Ny are two such p-primary, then
0 —)M/(Nl mNg) —)M/Nl EB]\l/J\/vQ7

and hence Ass M /(N1 N Ny) C Ass M /N1 U Ass M /Ny = {p}. O

Proposition 26.7. For M # 0, the following are equivalent. (i) M s p-coprimary, (ii) p is
minimal prime containing Ann M, and z.div M Cyp (iii) p" M =0 for somen > 1 and z.div M C

p.
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Proof. (i) = (ii): Ass M = {p}, and we have proven that the set of miimal associated primes of
M (p in this case) are the minimal primes containing Ann M. The second part follows since all
associated primes are contained in p.

(ii) = (iii): The second part of (ii) means that M — M, is injective. Now p"M — p"M,. So
we mat reduce to the case A = A, and M = M,, in which case p is the maximal ideal. Since p is
maximal and is minimal containing Ann M, this means v/Ann M = p. Since p is finitely generated,
p" M = 0 for some n.

(iif) = (i): p™ € Ann M C z.divM C p. Now for any ¢ 2 Ann M, we have p C q. This
proves that p is a minimal prime containing Ann M, which means it is a minimal associated prime.
Since the second part of (iii) means every associated prime is contained in p, this concludes the

argument. O

27. 08/11/2019

Recall we are assuming that A is Noetherian ad M is a finitely generated A-module.

Example 27.1. I C A is p-primary if and only if p” C A and for all a,b € A, abe ] = a €

porbel.

Corollary 27.2. If M is p-coprimary, then M — M,. If M is q-coprimary for some q € p, then
M, = 0.

Theorem 27.3 (Primary decomposition). Let A be Noetherian an M a finitely generated A-
module. Let N C M be a submodule. Then there is a decomposition N = ﬂpeASS M/N NP where
each N® C M is p-primary. If p is minimal in Ass M /N, then N¥ = ker (M — (M/N),). More-
over, this decomposition commutes with localization.

For the embedded primes, N¥ is not necessarily uniquely determined.

Proof. We say a submodule is irreducible if it is not the intersection of two strictly larger submod-
ules.

By Noetherianess, every submodule can be written as a finite intersection of irreducible sub-
modules.

Now it suffices to prove an irreducible submodule if primary. By quotienting, we may assume 0
is irreducible in M, and need to prove M is coprimary. If not, then there are at least two associated

primes pi,po, but then we have submodules M; ~ A/py, My ~ A/py of M. Now m € My, My
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would have p; = Ann(m) = py if m # 0, and this is not the case. Hence M; N My = 0, and this is
a contradiction.

Now we have a decomposition N = (), P; with Ass M/N C {p;}, since M/N — @, M/P;. We
can remove redundant factors, and then Ass M/M = {p;}. Let N' =(,; P, so that N = N'N P},
and so 0 # N'/N — M/P; and N'/N — M/N, and so Ass N'/N = {p;} is contained in Ass M/N.

To prove the uniqueness at minimal primes, consider

M —— (M)p

|

N
# — (),

~

J is injective since M /NP is p-coprimary. From the injection M /N — @ M /N9, we get the map v
when we localize at p, since p is a minimal prime in Ass M /N. Now the claim follows from a Snake

lemma in the diagram above. O

28. 13/11/2019

Theorem 28.1 (Krull intersection theorem). Let A be a Noetherian domain, and I C A an ideal.

Then

ﬂ[”:o.

n>0
More generally, if A is a ring and M a Noetherian module, I C A an ideal. Let N = (I"M.

Then there is x € I such that (1 + z)N = 0.

Proof. Choose a primary decomposition IN = ﬂp QP. We will prove that N C Q¥ for each p. If
I C p, then I"(M/QP) = 0 for n large enough, and so N C I"M C @QP. When I < p, choose
a€TI\p,and aN CIN C QP, but a is not a zerodivisor on M/Q", so N C QP. Hence IN = N,

and then the same proof as Nakayama gives the result. O

28.1. Jordan—Holder filtration.

Definition 28.2. Let A be a ring and M a module. We call M simple if M # 0 and does not

have a smaller nontrivial submodule. This is equivalent to M ~ A/m for a maximal ideal m.

Definition 28.3. For a decreasing filtration M,, we let the associated graded module gr, M be
gr,(M) = M;/M; 1. M, is a Jordan—Hdlder filtration or composition series if each quotient is

simple.
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29. 15/11/2019

Lemma 29.1. Given 0 = N - M — @Q — 0 and a filtration of M,, this induces a filtration on N
and @ such that 0 — No — My — Q¢ — 0. This also implies 0 — gry(N) — gry (M) — ¢gr (Q) —
0.

Theorem 29.2 (Jordan—-Holder). If a module M has a Jordan—Hdlder filtration, then the mul-
tiset {gr,(M)} is independent of the choice of such filtration. Any filtation can be refined to

a Jordan—Hélder filtration. Moreover, Supp(M) = {mazimal ideals m: A/m ~ gr,(M)}, and

M l> GamGSupp(M) Mm’

Proof. Note that if M, is a Jordan—Hélder filtration, and any 0 — N — M — @ — 0, then
{gr;(M)} = {gr;(N)} U {gr;(Q)} as multisets, and so if M D N = N; D Ny D ---0 is another
filtration, then this reduced the problem to N7, and then do the same thing.

The last two claims are clear by localizing. (Il

Definition 29.3. The length {(M) of a module M is the length of a Jordan-Hdlder filtration, or

oo if it does not exist.
Lemma 29.4. M is Artinian and Noetherian if and only if (M) < cc.

Proof. Since M is Noetherian, we can find maximal proper submodules. This gives a filtration,
and it is finite since M is Artinian.

Conversely, any filtration refines to a Jordan—H&lder filtration, so must be finite. O

Theorem 29.5. A is Artinian if and only if A is Noetherian and dim A = 0.

30. 18/11/2019

Proof. If A is Noetherian and dim A = 0, then we proved there is a finite filtration A, with gr,
being the quotient of a prime. But dim A = 0, so all of these are fields, and hence are simple. So
[(A) < o0, hence A is Artinian.

= : Suppose A is Artinian. Let &2 be the set of finite products of maximal ideals. Since A is
Artinian, we can find p € & a minimal element. In particular, this means that for any maximal

ideal m, we have mp = p. In particular, p C rad A. Now let & ={I Cp: Ip #0.}
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If p £0, then p € ., so & # (), so we can find I € .# minimal. Then I is principal, since if
a € I is with Ap # 0, then (a) € #, so I = (a). Now also (Ip)p = Ip # 0, so Ip € .#. This implies
Ip = I. Hence by Nakayama, we have I = 0. This is a contradiction.

Hence p = 0, that is, there is a product of maximal ideals which is 0. Such product also gives us
a Jordan—Holder filtration: If my - --m,, = 0, then (my ---m;)/(my ---m;11) is an Artinian A/m; ;-
module, hence a finite dimensional vector-space, and so has finite length. This proves that A has
finite length, hence A is Noetherian.

Also, {primes} = Supp A C {m;}, so A has dimension 0. O
Corollary 30.1. If A is Artinian, then A = Ay x --- x A, for some local Artinian rings A;.
Proposition 30.2. If A is a local Artinian ring, then the maximal ideal is nilpotent.

Proof. Since A is Artinian, m™ = m™t!. for some n, and since A is Noetherian, m” is finitely

generated, so by Nakayama we have m™ = 0. O
30.1. Graded rings.

Lemma 30.3. Let M be a graded A module, with A finitely generated Ag-algebra, M a finitely
generated A-module. Then each M, is finitely generated Ag-module, and M, =0 for n << 0.

Proof. Let A = Aglas, ..., a,| with a; homogeneous, and M = "7, Am; with m; homogeneous.

Now M = ZLJ Apa;m; as an Ap-module, and so the claim follows. O

31. 20/11/2019

Definition 31.1. Consider the graded ring A = k[xzo,...,2,] and M a finitely generated graded
A-module. We defined the Hilbert function of M by n +— dimy M,,. We define the Hilbert series
by Huf(t) = 3, ez (dim M, )t".

Example 31.2. Hx(t) = W
Theorem 31.3 (Hilbert—Serre). Hyps(t) = % for some f(t) € Z[t,t71].
Corollary 31.4. There exist a polynomial hyy € Q[t] such that hy,(t) = dim M, for n >> 0.

Proof of Theorem. Do induction on r. For r = —1 this is trivial. Consider the homomorphism
of graded modules M(—1) =% M. Now the kernel and cokernel are finitely generated graded

A/(xp)-modules, and one can do the induction. O
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Theorem 31.5. Let A a graded ring, M a finitely generated graded A-module, Ag Artinian and
A generated by homogeneous elements x; of degree k;i. Then if Hy(t) = >, I(M,)t", then

Hult) = it

31.1. Filtered modules. Let A be a Noetherian ring and q an ideal. We consider filtrations
compatible with g, in the sense that qM; C M;4;.

We consider the function n +— (M /M,,). We will prove it eventually is a polynomial.

Definition 31.6. We form A= A®q®q>®--- and M = Mg ® M; ©--- . So A is a graded ring
and M is a graded A-module.

32. 22/11/2019

Lemma 32.1. A is Noetherian.

Proof. Hilbert basis theorem: it is generated as an A-algebra by (finitely many) generators of

q. ]

Proposition 32.2. The following are equivalent: (1) My, 1 = qM,, forn >> 0, (2) M is a finitely
generated A-module.

In such case, we call the filtration q-stable.

Proof. (1) = (2) is clear, since each M; is finitely generated.
For the converse, choose homogeneous generators z; of degree d;. Then M, = Zl q"‘di z;, and

so for n > d; for all i we have M,, 1 = qM,,. O

Lemma 32.3 (Artin—Rees). Let M, be a g-adic filtered module that if finitely generated over a
Noetherian A. For N C M, we consider the induced filtration. If M, is stable, then No also is.

Proof. N C M, and since A is Noetherian, the claim follows. O

Theorem 32.4 (Samuel’s theorem). Let A be a Noetherian ring, Mo a finitely generated q-filtered
A-module. Suppose [(M/qM) < oo and M, is q-stable. Then there exist a polynomial (Hilbert—
Samuel polynomial) Py, () € Q[t] such that I(M/M,,) = P, (n) for n > 0. Moreover, the leading

term only depends on M, q.

Proof. Note [(M/qM) < oo iff Supp M NV (q) consist of maximal ideals.
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Replace A by A/(Ann M), so that we may assume Ann M = 0. Then this means Supp M =
Spec A, and so Spec A/q = V(q) consist only of maximal ideals. This means A/q is Artinian.

gry(A) is finitely generated by elements of degree 1, and gr, (M) is a finitely generated gr, (A)-
module (as M, is g-stable). Now apply Hilbert—Serre.

The claim about the leading term follows from the fact that q"M C M,, C q"~™M for some
fixed m. |

33. 25/11/2019

Definition 33.1. For d > deg Py, write py(n) = e(d, M)%[,i + -+ . We call e(d, M) € Z the

multiplicity.

Proposition 33.2. If 0 - N — M — @ — 0, then degpy < degpy and py = pn + P

mod zdegpPn—1

Proof. If M, is any g-filtration, then p is additive if we take the induced filtrations on M. Now the

claim follows from Artin—Rees. O
Corollary 33.3. If d > degpys, then e(d, M) = e(d,N) + e(d, Q).
33.1. Dimension theory.

Definition 33.4. For a module M, we define dim M = sup{r: pg C --- C p,} for primes p; €
Supp M.

Proposition 33.5. If M is Noetherian, then dim M = max{dim A/p: p is minimal among primes in Supp M }.

Proof. There are finitely many minimals elements of Supp M, and every q € Supp M contains such

a minimal element. U

Assume from now on that A is Noetherian local, and q be m primary (same as ¢ O m”, same as
I(A/q) < oo and q # 0).
Let M be a nonzero finitely generated module.

Then d(M) := deg pas does not depends on q.

Definition 33.6. Let s(M) be the smallest s such that there are 1, ..., 2, € mwith [((M/(x1,...,25)) <

0. These are called a system of parameters.
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Remark 33.7. This correspond to a local “chart” that is finite-to-1.
Theorem 33.8 (Dimension theorem). dim M = d(M) = s(M).

Lemma 33.9. If x € m, then s(M) < s(M/xM)+1. If z does not vanish on any irreducible com-
ponent of Supp M of mazimal dimension, then dim M/xM + 1 < dim M. If x is not a zerodivisor
on M, then d(M/xM) < d(M) — 1.

Proof. The first two are trivial. For the last, we have 0 — M = M — M/xM, and so d(M/zM) <
d(M).

34. 27/11/2019

Proposition 34.1. dim M < d(M).

Proof. Base case: d(M) = 0, in which case m™M stabilize. By Nakayama, we have m"M = 0.
Now Supp M = V(AnnM) C V(m™) = {m}. Hence dim M = 0.

Let pg C p1 C -+ C p, be a maximal chain in Supp M. Then dim M = dim A/pg. po is a minimal
prime, so po is an associated prime and let N C M isomorphic to A/pg. Then d(N) < d(M),
and so it suffices to prove r < d(N). Choose z € p; \ po. Then p; C --- C p, C N/zN. So
d—1 < dim N/zN < d(N/xzN) by induction. And then by the lemma we have d(N/zN) < d(N)—1

since x is not a zerodivisor. O
Proposition 34.2. d(M) < s(M).

Proof. Let x4, ...,z be a minimal system of parameters. Since (z1,...,25) C m, we have d(M) <

d((z1,...,25)*M). By Samuel’s theorem, this is at most s. O
Proposition 34.3. s(M) < dim M.

Proof. Base case dim M = 0: then Supp M = {m}, so M has finite length.

Consider {p € SuppM: dimA/p = dim M} which are contained in the minimal primes of
Supp M, which is a finite set. m is not in such set if dim M > 0. Choose = € m outside such set.
By the lemma, we have dim M /xM < dim M — 1. Also by the lemma, s(M) < s(M/xM), and we

are done. O

Corollary 34.4. Let (A,m) be a Noetherian local ring with residue field k. Then dimm/m? >
dim A.
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Proof. By Nakayama we have that dimm/m? is the minimal number of generators of m, which
serves as a system of parameters, hence is at least s(A). ]
34.1. Height.

Definition 34.5. Let p be a prime of a ring A. Then its height h(p) is dim A,.

Theorem 34.6. Let A be a Noetherian ring and fy,..., fr € A. Let p be a prime minimal among

primes that contain (f1,..., fr). Then h(p) < r.

Proof. By the assumptions, the only prime ideal in A,/(f1,..., fr) is p. Hence r > s(4,) =
h(p)-

35. 02/12/2019

Krull’s principal ideal theorem, regularity, inverse limits

36. 04/12/2019

Theorem 36.1. Given a short exact sequence 0 — Aq — Be — Co — 0, then the inverse limit is

left exact, and is right exact if Aq has only surjective maps.

Proof. Think of the inverse limit as the kernel of ©4: [[ A, — [][An given by (z;) — (z; —

im(x;41)), and apply Snake lemma. O

Definition 36.2. For a ring A with an ideal I, define the completion A := m A/I™. For a module

M, NI i=lim M/,

n

Proposition 36.3. For a topological abelian group, M — M s injective if and only if M is
separated (i.e. Hausdorff).

37. 06/12,/2019

Theorem 37.1. Let A be a local ring. Then A is flat A-module, we have A/m™ ~ A/m". A is

complete, and m C A.
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38. 09/12,/2019

Theorem 38.1. If A is a Noetherian local ring, then so is A. They have the same dimension, and

A is reqular if and only if A is.

Proof. We clearly have that m is maximal. But it is contained in the radical, and so t is the
unique maximal ideal. Since gr, A ~ gr, A, the right one must be Noetherian. Now let I be an
ideal of A, with the induced filtration Fil,/. Then gr, I is an ideal of a Noetherian ring, so is finitely
generated. Take homogeneous generators for it, and take lifts. Then using that A is complete and
the Krull intersection theorem, we can prove they generate I.

By the above, the quotients of the filtration are isomorphic, and so the Hilbert—Samuel polyno-
mials are the same, so dim A = dim A.

Regularity also follows since m/m? ~ m/m?. O

38.1. DVRs.
Definition 38.2. A discrete valuation ring is the ring of integers of a discrete valued field.

One can check that for ¢ a uniformizer, that m = (¢), and so the ideals are only m® = (¢¢). Hence

it is regular of dimension 1.

39. 11/12/2019

39.1. Depth.

Definition 39.1. For a ring A and a module M. Consider sequences z1,...,x, € A and let

M; = M/(x1,...,2;)M. x; is a M-regular sequence if for all i, x; € z.div(M;_1).

Remark 39.2. If M is Noetherian, this means all components of M;_; (including embedded) get

cut out.

Definition 39.3. For an ideal a with aM C M, let depth, M be the supremum of M-regular

sequences contained in a.

Example 39.4. Let A = k[z,y](,) and M = A/(zy,y?). Then depth M = 0 since (x,y) is an
embedded component.
Let Py, P, be two A? inside A* meeting transversely. Then any attempt at cutting will still have

an embedded prime.
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Assume for simplicity that A is local Noetherian and M is finitely generated.

Proposition 39.5. depth M = 0 if an only if a € Ass M, and depth M < dim M. If equality holds,
we call M Cohen—Macaulay.

Theorem 39.6. A is a DVR if and only if it is (1) normal domain of dimension 1, (2) normal

domain of depth 1, (3) regular ring of dimension 1, (4) m is pricipal and height(m) > 1.
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