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Problem sets

Altman-Kleiman

Website

1. 04/09/2019

Goal: study interesting comutative rings using the language of category theory, and geometryic

intuition when appropriate.

Rings are commutative.

Example 1.1. The following are rings

(1) {0},

(2) fields,

(3) rings of integers in number fields,

(4) k[t] for a (algebraically closed) field k (regular functions on the affine line A1), k[t1, . . . , tn],

quotients, etc.

1.1. Universal properties.

Definition 1.2. Given a ring A and an ideal I ⊆ A, the quotient ring is a ring A/I, equipped

with ring homomorphism A→ A/I, sending I to 0, and such that for any other wing B and a map

A→ B killing I, then there is a unique map f : A/I → B such that

A A/I

B

f

https://dspace.mit.edu/bitstream/handle/1721.1/116075/COMMALG_13Ed_031118_AKCCBYNCSA.pdf?sequence=1
https://learning-modules.mit.edu/class/index.html?uuid=/course/18/fa19/18.705
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Remark 1.3. By general category theory such A/I is unique up to unique isomorphism.

Definition 1.4. Let A be a ring. The polynomial algebra in one variable over A is an A-algebra

A[t] equipped with a distinct element t ∈ A[t] such that for any other such pair (B, b), there is a

unique map f : A[t]→ B with
A A[t] t

B b

Remark 1.5. It generalizes to any set indexing the variables.

Definition 1.6. Let A1, and A1 be rings. The product ring A1×A2 equipped with homomorphisms

pi : A1 × A2 → Ai for i ∈ {1, 2} such that for an other such ring P, there is a unique map

f : P → A1 ×A2 such that
P

A1 ×A2

A1 A2

p2p1

f

p2p1

Remark 1.7. Generalizes to any index set I.

Remark 1.8. In A1 × A2, one has idempotents e1 := (1, 0) and e2 := (0, 1). Conversely, if A is a

ring with an idempotent e ∈ A, then

A A1 ×A2

a (ae, a(1− e))

∼

where A1 := Ae and A2 := A(1− e) with identities e and 1− e.

Warning 1.9. There is no such thing as a direct sum of rings (A → A × B is not a ring homo-

morphism).

2. 6/09/2019

Definition 2.1. Given ideals I and J, we define the colon ideal or transporter

(I : J) = {a ∈ A : aJ ⊆ I}.

Definition 2.2. A subset S ⊆ A is multiplicative if S is closed under finite products.
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Definition 2.3. An ideal p is prme if A \ p is multiplicative.

Definition 2.4. We define the spectrum SpecA to be the set of all prime ideals.

Proposition 2.5. A ring homomorphism A→ B induces a map SpecB → SpecA.

Proposition 2.6. An ideal I ⊂ A is maximal if and only if A/I is a field, and prime if and only

if A/I is a domain.

Definition 2.7. Given a domain A, its fraction field Frac(A) is universal among fields F equipped

with an injective ring homomorphsim A→ F.

Definition 2.8. Given a domain A and P = A[ti], we denote the order of vanishing ordf to the

minimum of the degree of the monomials.

Definition 2.9. If K is a field, we denote the field of rational functions K(ti) to be the fraction

field of K[ti].

3. 09/09/2019

Lemma 3.1. Let S be a multiplicative subset of A and I an ideal with I ∩ S = ∅. Let J = {J ⊇

I : J ∩ S = ∅}. Then J has a maximal element p, and any such p is a prime ideal.

Proof. For any such p, and any x ̸∈ p, we have (p+(x))∩S ̸= ∅. So A\p = {x ∈ A : p+(x)∩S ̸= ∅}.

Now the claim is that A \ p is a multiplicative set. □

3.1. Radicals.

Definition 3.2. Let I ⊆ A be an ideal. Then
√
I := {x ∈ A : xn ∈ I for some n}.

Example 3.3. Is p is prime, then
√
p = p.

Theorem 3.4. We have
√
I =

⋂
p⊇I prime

p.

Proof. If p ⊇ I, then
√
I ⊇ √p = p. For the other inclusion, consider x ̸∈

√
I. Apply the lemma

with S = {1, x, x2, . . .}, which is disjoint to I. Then we get a prime ideal p ⊇ I disjoint to S. This

means x ̸∈ p. □
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Definition 3.5. For the ideal 0, nilA :=
√
0 is called the nilradical of A, which is the intersection

of all prime ideals.

Definition 3.6. A ring A is reduced if
√
0 = 0.

Definition 3.7. The Jacobson radical of a ring is radA :=
⋂

p maximal p.

Remark 3.8. Later we will prove that if A is a finitely generated algebra over a field or over Z,

then nilA = radA, which is a version of the Nullstellensatz.

Proposition 3.9. If u ∈ A×, then u+ radA ⊆ A×.

Proof. If u+ v ̸∈ A×, then it belong to a maximal ideal. □

Corollary 3.10. We have radA = {x ∈ A : 1− ax ∈ A× for all a ∈ A}.

Proof. ⊆ is clear. Now if x ̸∈ radA it is not in some maximal ideal m. Then m + (x) = A, so we

have m+ ax = 1 for m ∈ m, which means 1− ax = m is not a unit. □

Example 3.11. Consider A = k[[t]] for a field k. Consider m = tk[[t]]. Note A× = A \m, and that

this means A is local, and all ideals are mn for varying n ≥ 0. So radA = m and nilA = 0.

Definition 3.12. A ring A with exactly one maximal ideal is called a local ring, and the quotient

A/m is called its residue field.

Definition 3.13. A ring A with finitely many maximal ideals is called a semilocal ring.

3.2. Spectrum.

Definition 3.14. We turn SpecA into a topological space by taking the closed sets to be

V (I) := {p prime : p ⊇ I}

for ideals I ⊆ A. Note V (I)∪V (J) = V (I ∩J) and
⋂

i V (Ii) = V (
∑

i Ii). This is called the Zariski

topology.

Proposition 3.15. V (I) = ∅ ⇐⇒ I = A and V (I) = SpecA ⇐⇒ A ⊆ nilA. Moreover,

V (I) = V (J) ⇐⇒
√
I =
√
J.

Example 3.16. Let k be an algebraically closed field and A = k[t]. Then SpecA is k ∪ {η} with

the profinite topology on k and whose all nonempty open sets contain η, that is {η} = SpecA.
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4. 11/09/2019

Definition 4.1. For any subset S ⊆ SpecA, we say a point p ∈ SpecA is a generic point for S if

S = {p}.

Proposition 4.2. A point p ∈ SpecA is closed if and only if p is a maximal ideal.

Proof. This is since {p} = V (p). □

Example 4.3. Let A = k[x, y] for k algebraically closed. Then the points of SpecA correspond

to the ideals of the form (x− a, y − b), to irreducible polynomials and to the zero ideal.

Definition 4.4. A topological space is irreducible if it is nonempty and is not a union of two

proper closed subsets.

Proposition 4.5. The irreducible closed subsets of SpecA are precisely the sets of the form V (p)

for primes p.

Proof. It is easy to see that V (p) is irreducible. Conversely, consider V (I) with I radical and not

prime. If ab ∈ I but a, b ̸∈ I, then V (I) = V (I + (a)) ∩ V (I + (b)). □

Definition 4.6. An irreducible component of a topological space X is a maximal irreducible

(closed) subset. The analogous notion in commutative algebra is of a minimal prime.

Theorem 4.7. Let I be an ideal of A. Then

√
I =

⋂
p

p

where p varies over minimal primes over I.

Proof. Obvious from the previous version and Zorn’s lemma. □

5. 13/09/2019

Proposition 5.1. A is a domain if and only if A is reduced and SpecA is irreducible.

Proof. If A is a domain it is clear. Otherwise, Since SpecA has only on component, it has only

one minimal prime, and it must be
√
0 = 0. Hence 0 is prime, that is, A is a domain. □

Proposition 5.2. Spec is a contravariant functor.
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5.1. Modules.

Definition 5.3. The kernel of f is a pair (K, i) universal among the pairs such that K i−→M
f−→ N

is 0. The cokernel is (C, q) universal among the ones such that M f−→ N
q−→ C is 0. The image of f

is the kernel of the cokernel, and the coimage is the cokernel of the kernel, and they are isomorphic.

Theorem 5.4. If A is a PID, then any submodule of a free A-module is free.

Proof. Let F be a submodule of the free module E. By the axiom of choice, we may take a well

ordered I with E =
⊕

i∈I A, with projections πi. Let Ei =
⊕

j≤i A, and Fi = F ∩ Ei. Then

πi(Fi) = (ci) for some ci ∈ A. If ci ̸= 0, we choose fi ∈ Fi such that πi(fi) = ci. Then it is easy to

see that fi form a basis for F. □

6. 16/09/2019

Proposition 6.1. Given an exact sequence 0→ N
α−→M

β−→ P → 0, the following are equivalent:

(1) it is isomorphic to 0→ N → N ⊕ P → P → 0,

(2) there exist a section s : P →M such that β ◦ s = id,

(3) there exist a retraction r : M → N such that r ◦ α = id.

Lemma 6.2 (Snake lemma). Given a commutative diagram

0 M ′ M M ′′ 0

0 N ′ N N ′′ 0

γ′ γ γ′′

with exact rows, we get an exact sequence

0→ ker (γ′)→ ker (γ)→ ker (γ′′)→ coker (γ′)→ coker (γ)→ coker (γ′′)→ 0.

Definition 6.3. A presentation of M is an exact sequence F1 → F0 → M → 0 with F0, F1 free.

Then M is finitely generated if F0 can be chosen with finite rank, and finitely presented is F0 and

F1 can be chosen of finite rank.

Example 6.4. A = k[t, u] and M = (t, u) then A → A2 → M → 0 with z 7→ (uz,−tz) and

(x, y)→ xt+ yu.



8 BJORN POONEN, NOTES BY MURILO ZANARELLA

7. 18/09/2019

Definition 7.1. For a ring A and a module M, we have functors

Hom(M, ·) : ModA → ModA and Hom(·,M) : ModA → ModopA .

Definition 7.2. For categories C ,D , an additive functor F : C → D is such that the maps

Hom(A,B)→ Hom(FA,FB) are group homomorphisms.

Definition 7.3. For contravariant functors F : C → D , we define left/right exact by applying the

definition to F : C op → D .

Theorem 7.4. Both Hom functors are left exact.

Theorem 7.5. Let A be a ring, P a module. The following are equivalent, and when they are true

we say P is projective.

(1) Given M ↠ N and P → N, there is a P →M that is compatible.

P

M N

(2) Every short exact sequence 0→ K →M → P → 0 splits.

(3) P is a direct summand of a free module.

(4) Hom(·, P ) is exact.

Proof. (1) =⇒ (2): Use 1 with P = N to get a section.

(2) =⇒ (3): Take M free and use (2).

(3) =⇒ (4): Suppose K ⊕ P is free. Then Hom(K ⊕ P, ·) is exact, and Hom(K ⊕ P, ·) =

Hom(K, ·)⊕Hom(P, ·), so both must be exact, which implies (4).

(4) =⇒ (1): Apply Hom(P, ·) to 0 → K → M → N → 0, and so in particular Hom(P,M) →

Hom(P,N)→ 0, which is what we want. □

8. 23/09/2019

Categories, colimits.
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9. 25/09/2019

More on colimits.

10. 27/09/2019

Proposition 10.1. For a colimit lim−→
i

Mi in modules of A and N is an A-module, apply Hom(N, ·)

to the limit. Then we have a map θ : lim−→
i

Hom(N,Mi)→ Hom(N, lim−→
i

Mi).

Now suppose the limit is filtered.

(1) If N is finitely generated, then θ is injective.

(2) If N is finitely presented, then θ is an isomorphism.

Proof of (1). Let n1, . . . , nm be generators of N. Let f ∈ lim−→
i

Hom(N,Mi). Say it is represented

by f : N → Mi. If θ(f) = 0, then θ(f)(nk) = 0, and this holds in lim−→
i

Mi, so there is a jk with

f(nk) = 0 in Mjk , so there is a j > jk such that f = 0 ∈Mj , so f = 0 ∈ lim−→
i

Mi. □

Theorem 10.2. Filtered colimits preserve exactness.

Proof. The morphisms lim−→
i

Li → lim−→
i

Mi → lim−→
i

Ni come from the universal properties and their

composition is 0. If m ∈ lim−→
i

Mi is in the kernel, then it is m ∈Mi, and since it maps to 0, we can

further choose i such that Mi → Ni maps m to 0. This means m is in the image of Li →Mi, and

so that it is in the iamge of lim−→
i

Li → lim−→
i

Mi. □

11. 30/09/2019

Tensors.

Theorem 11.1. For N a (A,B)-bimodule, ⊗AN and HomB(N, ·) is an adjoint pair.

Corollary 11.2. ⊗AN preserves colimits, and is right exact.

Theorem 11.3 (Watts 1960). Any A-linear functor F : ModA → ModA that preserves direct sums

and cokernels is isomorphic to ⊗AP for some P = F (A). In general, if F does not preserves direct

sums and cokernels, then we only have a natural transformation Θ: ⊗A P → F such that Θ(A) is

the identity.
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12. 02/10/2019

Definition 12.1. For a ring A and an A-module M, let TM,
∧

M = TM/(m⊗m) and SymM =

TM/(a⊗ b− b⊗ a) be the tensor algebra, the exterior algebra, and the symmetric algebra.

Example 12.2 (Determinant). If M is a free A-module of rank r, then detM :=
∧r

M is free

of rank 1. If f : M → M is a linear map, this induces a map
∧r

f :
∧r

M →
∧r

M, and this is

multiplication by the determinant.

12.1. Flatness.

Definition 12.3 (Serre, ∼1955). The functor ⊗AM is always right exact. We call M flat if it is

also left exact.

Lemma 12.4.
⊕

i∈I Mi is flat if and only if all Mi are flat.

Proof. Follows from the distributivity of ⊕ and ⊗. □

Corollary 12.5. Projective modules are flat.

Remark 12.6. ⊗AM is faithful if and only if N ⊗M → P ⊗M being 0 implies N → P to be 0.

Definition 12.7. M is faithfully flat if M is flat and faithful.

Example 12.8. Nonzero free modules.

Proposition 12.9. Suppose 0→M1 →M2 →M3 → 0 with M3 flat. Then tensoring with any N

preserves the exactness. Moreover, M1 is flat if and only if M2 is flat.
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13. 04/10/2019

Proof. Take a presentation 0→ K → F → N and tensor the initial sequence, use snake lemma on

the first two rows.

0

M1 ⊗K M2 ⊗K M3 ⊗K 0

0 M1 ⊗ F M2 ⊗ F M3 ⊗ F 0

M1 ⊗N M2 ⊗N M3 ⊗N 0

0 0 0

For the second part, again take any injection N ′ → N and tensor it with the initial sequence

and apply the snake lemma. □

13.1. Geometric interpretation of flatness. For a prime p ⊆ A, let k(p) = Frac(A/p). We have

A ↠ A/p ↪→ k(p), which induces Spec k(p)→ SpecA/p→ SpecA. Now SpecA/p is an irreducible

closed subset of SpecA, with Spec k(p) mapping to its generic point.

Now given a module M, we a family of vector spaces M ⊗A k(p). M being flat is kinda of

equivalent to M ⊗k(p) being well-behaved over p. Faithfully flat is kinda of equivalent to M ⊗k(p)

being well-behaved and non zero (if M is a A-algebra, this is the same as the projection being

surjective).

Theorem 13.1 (Lazard’s Theorem). M is flat if and only if it is a filtered colimit of free modules

of finite rank.

13.2. Cayley–Hamilton.

Theorem 13.2 (Cayley–Hamilton). Let A be a ring, and X ∈Mn(A). Then det(TI−X)(X) = 0

Proof. Prove for the generic matrix by choosing an embedding to C and diagonalizing. □

Theorem 13.3 (Determinant trick). For A a ring and a finitely generated module M with an

endomorphism ϕ : M → M, Choose a basis of M and write ϕ as a matrix X. Then PX(ϕ) = 0 ∈

End(M).

Proof. Just note that it is true for free modules, and hence for its quotients. □
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14. 07/10/2019

Lemma 14.1. Let M be a finitely generated A-module, and I ⊆ A an ideal. If M = IM, then

there is b ∈ I such that (1 + b)M = 0.

Proof. Choose generators mi of M, and write relations mi =
∑

j aijmj with aij ∈ I. Then use

Cayley–Hamilton. □

Lemma 14.2 (Nakayama’s lemma). Let A be a ring, I ⊆ rad(A) be an ideal. Then for a finitely

generated module M, M = IM implies M = 0.

Proof. Apply the lemma. There is b ∈ I with (1 + b)M = 0. But 1+ b is a unit, hence M = 0. □

Corollary 14.3. Let A be a local ring with maximal ideal m, and M a finitely generated module.

Consider m1, . . . ,mn. Then mi generate M if and only if they generate M/mM.

Proof. Let N be the module generated by the mi. Let Q = M/N. Then we have an exact sequence

N/mN → M/mM → Q/mQ → 0. Now by Nakayama, Q/mQ = 0 if and only if Q = 0, which is

what we want. □

Remark 14.4. There is an analogue in group theory: if G is a p-group, gi generate G if and only

if they generate the Frattini quotient G/(Gp[G,G]).

Proposition 14.5. Let A be a ring and M an A-module. Then free =⇒ projective =⇒ flat.

Moreover, they are all equivalent if A is local and M is finitely presented.

Also, for a projective module, finitely generated =⇒ finitely presented.

Proof. Supose A is local and m is the maximal ideal, with k = A/m. Let M be a flat finitely

presented A-module. Choose a basis mi for M⊗k, and choose lifts mi. By Nakayama, mi generate

M. Since M is finitely generated, there are finitely many mi. So we have a map An → M → 0.

Since M is finitely presented, we may choose this such that 0→ L→ An →M → 0 with L finitely

generated. Tensoring with k, and using that M is flat, we conclude L⊗k = 0. By Nakayama again,

we conclude L = 0.

For the second claim, let M be finitely generated projective. Doing the same thing as above,

0→ L→ An →M → 0 is split. Then An → L giving the splitting is surjective, and so L is finitely

generated. □
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14.1. Integral extensions.

Definition 14.6. A a ring, B an A-algebra. Then x ∈ B is integral if x satisfies a monic equation.

Proposition 14.7. x is integral if and only if A[x] is generated as a A-module, if and only if x is

contained in an A-subalgebra C ⊆ B that is finitely generated as a A-module.

15. 09/10/2019

Proof. All is easy, except that the last one implies integrality, but this follows from the determinant

trick. □

Definition 15.1. The integral closure (or normalization) of A over B is the ring of integral

elements over B.

Example 15.2. A = k[t2, t3] is not normal.

16. 11/10/2019

17. 16/10/2019

18. 18/10/2019

We will establish

M has property P ⇐⇒ Mm has property P for all maximal ideals m

for several P.

Proposition 18.1. P ="is trivial".

Proof. Take s ∈M nonzero, and consider a maximal ideal that contains Ann(s). □

Proposition 18.2. P ="exactness".

Proof. Follows from the above and the exactness of localization. □

Proposition 18.3. P ="flatness".

Proof. Follows from the above and the fact that localization and tensor commute. □

Corollary 18.4. A module finitely presented M is flat if and only if it is locally free if and only

if it is projective.
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19. 21/10/2019

19.1. Cohen–Seidenberg theory. Setup: A′/A integral extension.

Lemma 19.1. Suppose A,A′ are domains. Then A′ is a field if and only if A is a field.

Proof. For x ∈ A, q/x ∈ A′ is integral over A, and then we can use this to produce an inverse.

Conversely, is A is a field, we consider a minimal polynomial for any element y ∈ A′, and by

inverting the constant term let us write an inverse of y. □

Definition 19.2. We say p′ ⊆ A′ lies over p ⊆ A if p = p′ ∩ A. Equivalently, if p′ maps to p in

SpecA′ → SpecA.

Theorem 19.3. If p′/p, then p′ is maximal if and only if p is maximal. If p′1, p
′
2 are two such

distinct primes, no one is contained in the other. Given p and I ⊆ A′ with I ∩ A ⊆ p, then there

is such p′ with I ⊆ p′.

Proof. The first statement follows from the lemma for A/p ⊆ A′/p′.

Now localize at S = A − p ⊆ A′ − p′. Then p becomes maximal, and now it follows from the

first statement.

Again localize to assume A is local with maximal ideal p. Then take a maximal ideal of the

extension containing I. It must lie over p since it is the only maximal ideal. □

Proposition 19.4. Let L = FracA′,K = FracA. Then l ∈ L is in A′ if and only if its minimal

polynomial has coefficients in A.

Theorem 19.5 (Going down theorem). Suppose A,A′ are domains, with A normal. Given q′/q

and p ⊆ q, there is a p′ lying over p and with p′ ⊆ q′.

20. 23/10/2019

Proof. Consider the minimal polynomial Fa′ ∈ K[x] of a′ ∈ K ′ := FracA′. We can prove that if

a′ ∈ A′, the Fa′ ∈ A[x]. If in addition a′ ∈ pA′, then we can prove Fa′ ∈ xn + an−1x
n−1 + · · ·+ a0

with ai ∈ p.

Now consider pA′
q′ ∩ A. It contains p, but if a is an element of it not in p, we have a = a′/s′

with a′ ∈ pA′ and s′ ∈ A′ − q′. Then anFs′(x) = Fa′(ax). By the above, this has coefficients in p,

and so the same is true for Ss′ . So s′ ∈ p, which is a contradiction. Hence pA′
q′ ∩A = p.
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Now let p′′ be a ideal maximal along the ones of A′
q′ containing pA′

q and disjoint from A − p.

This exists by the above. We can prove this is a prime ideal, and p′′∩A = p. Now p′ = A′∩p′′. □

Theorem 20.1 (Noether normalization). Let k be a field, A a finitely generated k-algebra, and

I1 ⊂ I2 ⊂ · · · ⊂ Ir ⊂ A are ideals, then there are algebraically independent t1, . . . , tm ∈ A such

that A is module-finite over P := k[t1, . . . , tm], and for each i, It ∩ P = k[t1, . . . , tl].

21. 25/10/2019

Missed

Proof and applications of Noether normalization.

Theorem 21.1. If A is a fnitely generated k-algebra for a field k, then if A is a field, then A is

a finite extension of k.

22. 28/10/2019

Theorem 22.1. If A is a finitely generated k-algebra, then
√
0 = radA.

Proof. Suppose f ∈
√
0. Then SpecAf has the points p ̸∋ f, so SpecAf ̸= 0, so Af ̸= 0. Choose a

maximal ideal m of Af . Then look at A → Af → Af/m, and this get us an ideal m ⊆ A, and we

have a map A/m ↪→ Af/m. Now Af is finitely generated k-algebra, so Af/m is a finite extension of

k by the previous theorem. Hence A/m is a finitely generated k-vector space, hence integral over

k. This implies that A/m is a field. Now we can see that f ̸∈ m. □

Theorem 22.2 (Hilbert Nullstelensatz). Let A be a finitely generated k-algebra, and I an ideal of

A. Then
√
I =

⋂
m⊇I

m.

Proof. Apply the previous theorem to A/I. □

22.1. Dimension theory.

Definition 22.3. Given a field extension L ⊇ k, let T be a maximal algebraically independent

subset of L over k. Then we denote tr.deg(L/k) = #T the transcendental degree of L/k.

Example 22.4. If L is a finitely generated as a field extension over k, then tr.deg(L/k) is finite,

and L/k(T ) is a finite extension.
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Lemma 22.5. Let A be finitely generated k-algebra which is a domain. Let K = FracA. Let

d := tr.deg(K/k). Suppose we have a chain of prime ideals p0 ⊂ · · · ⊂ pr. Then sup r = d, and

r = d if and only if the chain is maximal.

Proof. Let Ti = (t1, . . . , td). Then we Noether normalization, pi ∩ P are contained in the chain

T0 ⊂ · · · ⊂ Td, and they are distinct by incomparability. Hence r ≤ d. Moreover, we will use the

going up/down to extend the chain. We of course assume p0 = 0 and pr maximal, which implies

that pr ∩ P = Td. Suppose i is the smallest index with pi ∩ P ̸= Ti. Then apply going down to

A/pi−1 over P/Ti−1, since the bottom one is a domain (is a polynomial ring over k). □

Definition 22.6. For any A ̸= 0 ring, we define its dimension as sup r for p0 ⊂ · · · pr ⊆ A.

Theorem 22.7. If A is a finitely generated k-algebra that is a domain, then for p ∈ SpecA, we

have dimAp + dimA/p = dimA. In particular, if m is a maximal ideal, dimAm = dimA.

23. 30/10/2019

Theorem 23.1. Let A be a finitely generated k-algebra. Consider p ⊆ q primes of A. Then every

maximal chain of primes between them have the same length,

Proof. We may assume p = 0, but then A is a domain, and we are done by the above. □

23.1. Noetherianess.

Definition 23.2. A commutative ring A is Noetherian if one of the following equivalent conditions

hold.

(1) Every ideal is finitely generated.

(2) A satisfies the ascending chain condition (I1 ⊆ I2 ⊆ · · · stabilize).

(3) For any set of ideals S, there is a maximal element.

Definition 23.3. A commutative ring A is Artinian if one of the following equivalent conditions

hold.

(1) A satisfies the descending chain condition (I1 ⊇ I2 ⊇ · · · stabilize).

(2) For any set of ideals S, there is a minimal element.

Proposition 23.4. Quotients an localizations of Noetherian rings are Noetherian.

Lemma 23.5. If A is Noetherian, then so is A[x].
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Proof. Let I be an ideal of A[x]. Let In = {f ∈ I : deg f = n} and Ln = {lc(f) : f ∈ In} ∪ {0}.

Then Ln is an ideal, and Ln−1 ⊆ Ln. Since A is Noetherian, they stabilize to L. This proves that

there is n such that In generate I. Now choose polynomials that generate each Lm for m ≤ n.

They generate A[x]. □

Theorem 23.6 (Hilbert basis). Let A be Noetherian, and B a finitely generated A-algebra. Then

B is Noetherian.

Proof. This follows from the two previous results. □

Definition 23.7. For a ring A and a module M, M is called Noetherian if one of the following

equivalent statements hold.

(1) Every submodule of M is finitely generated.

(2) Satisfies the ascending chain condition.

(3) Every subset of submodules has a maximal element.

Remark 23.8. A is Noetherian if anf only if it is Noetherian as an A-module. One can also define

an Artinian module.

Proposition 23.9. Noetherianess and finitely-generatedness of modules is stable under extensions.

Proposition 23.10. Let A be Noetherian and M an A-module. Then M is Noetherian if and

only if M is finitely generated if and only if it is finitely presented.

Lemma 23.11. Consider A ⊆ B ⊆ C rings. Suppose A is Noetherian, C is a finitely generated

A-algebra and C is integral over B. Then B is a finitely generated A-algebra.

Proof. C is a finitely generated integral B-algebra, so C is finitely generated as a B-module. Write

C = A[c1, . . . , cm] = Bc′1 + · · ·+Bc′n,

and write ci =
∑

j bijc
′
j and c′ic

′
j =

∑
k bijkc

′
k.

Let B0 = A[bij , bijk] a finitely generated A-algebra. Then C = B0 +B0c
′
1 + · · ·+B0c

′
n, since it

contains ci and is closed under multiplication by ci. Now C is a Noetherian B0-module, and B is

a finitely generated B0-module since it is a submodule of C. This implies B is a finitely generatd

A-algebra. □
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24. 31/10/2019

Theorem 24.1 (Noether’s theorem on invariant subrings). Let k be a Noetherian ring, A a finitely

generated k-algebra, and G ⊆ Autk-algA a finite group. Then AG is also a finitely generated algebra

over k. (Slogan: finite quotients of varieties are varieties)

Example 24.2. A = k[x1, . . . , xn], G = Sn, then AG ≃ k[y1, . . . , yn].

Proof. We just need to check that A is integral over AG: an element a is a root of
∏

g∈G(x−ga). □

Lemma 24.3 (Noetherian induction). Let X be a Noetherian space, and P a property of closed

subsets of X. Assume that whenever P holds for all proper Z ⊂ Y, then P holds for Y. Then P

holds for any closed subset.

Theorem 24.4 (Chevalley’s theorem). Let A→ B be a homomorphism between finitely generated

k-algebras where k is Noetherian. Then SpecB → SpecA maps constructible sets to constructible

sets.

24.1. Associated primes.

Definition 24.5. For a ring A and module M, a prime p is an associated prime of M if it is

p = Ann(m) for some m ∈ M. Equivalently, M contains a submodule isomorphic to A/p. We

denote the set of associated primes by AssM. If I is an ideal, we denote Ass I := Ass(A/I).

25. 04/11/2019

Proposition 25.1. If 0→M1 →M2 →M3 → 0, then AssM1 ⊆ AssM2 ⊆ AssM1 ∪AssM3.

Proposition 25.2. If A is Noetherian or M is Notherian, then

z.divM =
⋃

p∈AssM

p.

Proposition 25.3. AssM ⊆
⋃

p∈AssM V (p) ⊆ Supp M ⊆ V (Ann M. We have = in the third if

A or M is Noetherian and in the fourth if M is finitely generated.

Also, If A or M is Noetherian, then the minimal elements of Supp M are associated primes.

26. 06/11/2019

Lemma 26.1. Let M be Noetherian. Then there is a chain 0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M such

that Mi/Mi−1 ≃ A/pi for some primes pi. For any such chain, AssM ⊆ {p1, . . . , pn} ⊆ SuppM.
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Proof. If M ̸= 0, then AssM ̸= ∅, so we have A/p1 ↪→ M, so that is M1, and then repeat the

process to the quotient. This process terminates since M is Noetherian.

Now the second part of the claim follows from the statement about AssM under exact sequences.

□

Corollary 26.2. If M is Noetherian, then AssM is finite.

Example 26.3 (Geometric interpretation). Assume M is Noetherian finitely generated. Then

SuppM is closed, and

AssM = {minimal assoc. primes} ⊔ {nonminimal assoc. primes}

so

AssM = {minimal primes containing Ann M} ⊔ {embedded primes}

which is

AssM = {irreducible components of M} ⊔ {embedded components}

26.1. Primary decomposition. For this entire section, A is Noetherian, and M is a finitely

generated A-module.

Definition 26.4. A submodule N ⊆M is p-primary if AssM/N = {p}. We say it is primary if it

is p-primary for some p.

Definition 26.5. M is coprimary if AssM is a singleton. Equivalently, 0 ⊆M is primary.

Proposition 26.6. A finite intersection of p-primary submodules of M is p-primary.

Proof. If N1, N2 are two such p-primary, then

0→M/(N1 ∩N2)→M/N1 ⊕M/N2,

and hence AssM/(N1 ∩N2) ⊆ AssM/N1 ∪AssM/N2 = {p}. □

Proposition 26.7. For M ̸= 0, the following are equivalent. (i) M is p-coprimary, (ii) p is

minimal prime containing Ann M, and z.divM ⊆ p (iii) pnM = 0 for some n ≥ 1 and z.divM ⊆

p.
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Proof. (i) =⇒ (ii): AssM = {p}, and we have proven that the set of miimal associated primes of

M (p in this case) are the minimal primes containing Ann M. The second part follows since all

associated primes are contained in p.

(ii) =⇒ (iii): The second part of (ii) means that M →Mp is injective. Now pnM ↪→ pnMp. So

we mat reduce to the case A = Ap and M = Mp, in which case p is the maximal ideal. Since p is

maximal and is minimal containing Ann M, this means
√
Ann M = p. Since p is finitely generated,

pnM = 0 for some n.

(iii) =⇒ (i): pn ⊆ Ann M ⊆ z.divM ⊆ p. Now for any q ⊇ Ann M, we have p ⊆ q. This

proves that p is a minimal prime containing Ann M, which means it is a minimal associated prime.

Since the second part of (iii) means every associated prime is contained in p, this concludes the

argument. □

27. 08/11/2019

Recall we are assuming that A is Noetherian ad M is a finitely generated A-module.

Example 27.1. I ⊆ A is p-primary if and only if pn ⊆ A and for all a, b ∈ A, ab ∈ I =⇒ a ∈

p or b ∈ I.

Corollary 27.2. If M is p-coprimary, then M ↪→Mp. If M is q-coprimary for some q ̸⊆ p, then

Mp = 0.

Theorem 27.3 (Primary decomposition). Let A be Noetherian an M a finitely generated A-

module. Let N ⊆ M be a submodule. Then there is a decomposition N =
⋂

p∈AssM/N Np where

each Np ⊆ M is p-primary. If p is minimal in AssM/N, then Np = ker (M → (M/N)p) . More-

over, this decomposition commutes with localization.

For the embedded primes, Np is not necessarily uniquely determined.

Proof. We say a submodule is irreducible if it is not the intersection of two strictly larger submod-

ules.

By Noetherianess, every submodule can be written as a finite intersection of irreducible sub-

modules.

Now it suffices to prove an irreducible submodule if primary. By quotienting, we may assume 0

is irreducible in M, and need to prove M is coprimary. If not, then there are at least two associated

primes p1, p2, but then we have submodules M1 ≃ A/p1, M2 ≃ A/p2 of M. Now m ∈ M1,M2
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would have p1 = Ann(m) = p2 if m ̸= 0, and this is not the case. Hence M1 ∩M2 = 0, and this is

a contradiction.

Now we have a decomposition N =
⋂

i Pi with AssM/N ⊆ {pi}, since M/N ↪→
⊕

i M/Pi. We

can remove redundant factors, and then AssM/M = {pi}. Let N ′ =
⋂

i ̸=j Pi, so that N = N ′∩Pj ,

and so 0 ̸= N ′/N ↪→M/Pj and N ′/N ↪→M/N, and so AssN ′/N = {pi} is contained in AssM/N.

To prove the uniqueness at minimal primes, consider

M
(
M
N

)
p

M
Np

(
M
Np

)
p

γ

δ

δ is injective since M/Np is p-coprimary. From the injection M/N ↪→
⊕

M/Nq, we get the map γ

when we localize at p, since p is a minimal prime in AssM/N. Now the claim follows from a Snake

lemma in the diagram above. □

28. 13/11/2019

Theorem 28.1 (Krull intersection theorem). Let A be a Noetherian domain, and I ⊂ A an ideal.

Then ⋂
n≥0

In = 0.

More generally, if A is a ring and M a Noetherian module, I ⊂ A an ideal. Let N =
⋂
InM.

Then there is x ∈ I such that (1 + x)N = 0.

Proof. Choose a primary decomposition IN =
⋂

p Q
p. We will prove that N ⊆ Qp for each p. If

I ⊆ p, then In(M/Qp) = 0 for n large enough, and so N ⊆ InM ⊆ Qp. When I ̸⊆ p, choose

a ∈ I \ p, and aN ⊆ IN ⊆ Qp, but a is not a zerodivisor on M/Qp, so N ⊆ Qp. Hence IN = N,

and then the same proof as Nakayama gives the result. □

28.1. Jordan–Hölder filtration.

Definition 28.2. Let A be a ring and M a module. We call M simple if M ̸= 0 and does not

have a smaller nontrivial submodule. This is equivalent to M ≃ A/m for a maximal ideal m.

Definition 28.3. For a decreasing filtration M•, we let the associated graded module gr• M be

gri(M) = Mi/Mi+1. M• is a Jordan–Hölder filtration or composition series if each quotient is

simple.
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29. 15/11/2019

Lemma 29.1. Given 0→ N →M → Q→ 0 and a filtration of M•, this induces a filtration on N

and Q such that 0→ N• →M• → Q• → 0. This also implies 0→ gr•(N)→ gr•(M)→ gr•(Q)→

0.

Theorem 29.2 (Jordan–Hölder). If a module M has a Jordan–Hölder filtration, then the mul-

tiset {gri(M)} is independent of the choice of such filtration. Any filtation can be refined to

a Jordan–Hölder filtration. Moreover, Supp(M) = {maximal ideals m : A/m ≃ gri(M)}, and

M
∼−→

⊕
m∈Supp(M) Mm.

Proof. Note that if M• is a Jordan–Hölder filtration, and any 0 → N → M → Q → 0, then

{gri(M)} = {gri(N)} ∪ {gri(Q)} as multisets, and so if M ⊃ N = N1 ⊃ N2 ⊃ · · · 0 is another

filtration, then this reduced the problem to N1, and then do the same thing.

The last two claims are clear by localizing. □

Definition 29.3. The length l(M) of a module M is the length of a Jordan–Hölder filtration, or

∞ if it does not exist.

Lemma 29.4. M is Artinian and Noetherian if and only if l(M) <∞.

Proof. Since M is Noetherian, we can find maximal proper submodules. This gives a filtration,

and it is finite since M is Artinian.

Conversely, any filtration refines to a Jordan–Hölder filtration, so must be finite. □

Theorem 29.5. A is Artinian if and only if A is Noetherian and dimA = 0.

30. 18/11/2019

Proof. If A is Noetherian and dimA = 0, then we proved there is a finite filtration A• with gr•

being the quotient of a prime. But dimA = 0, so all of these are fields, and hence are simple. So

l(A) <∞, hence A is Artinian.

=⇒ : Suppose A is Artinian. Let P be the set of finite products of maximal ideals. Since A is

Artinian, we can find p ∈ P a minimal element. In particular, this means that for any maximal

ideal m, we have mp = p. In particular, p ⊆ radA. Now let I = {I ⊆ p : Ip ̸= 0.}
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If p ̸= 0, then p ∈ I , so I ̸= ∅, so we can find I ∈ I minimal. Then I is principal, since if

a ∈ I is with Ap ̸= 0, then (a) ∈ I , so I = (a). Now also (Ip)p = Ip ̸= 0, so Ip ∈ I . This implies

Ip = I. Hence by Nakayama, we have I = 0. This is a contradiction.

Hence p = 0, that is, there is a product of maximal ideals which is 0. Such product also gives us

a Jordan–Hölder filtration: If m1 · · ·mn = 0, then (m1 · · ·mi)/(m1 · · ·mi+1) is an Artinian A/mi+1-

module, hence a finite dimensional vector-space, and so has finite length. This proves that A has

finite length, hence A is Noetherian.

Also, {primes} = SuppA ⊆ {mi}, so A has dimension 0. □

Corollary 30.1. If A is Artinian, then A = A1 × · · · ×An for some local Artinian rings Ai.

Proposition 30.2. If A is a local Artinian ring, then the maximal ideal is nilpotent.

Proof. Since A is Artinian, mn = mn+1. for some n, and since A is Noetherian, mn is finitely

generated, so by Nakayama we have mn = 0. □

30.1. Graded rings.

Lemma 30.3. Let M be a graded A module, with A finitely generated A0-algebra, M a finitely

generated A-module. Then each Mn is finitely generated A0-module, and Mn = 0 for n << 0.

Proof. Let A = A0[a1, . . . , ar] with ai homogeneous, and M =
∑s

i=1 Ami with mi homogeneous.

Now M =
∑

i,j A0aimj as an A0-module, and so the claim follows. □

31. 20/11/2019

Definition 31.1. Consider the graded ring A = k[x0, . . . , xr] and M a finitely generated graded

A-module. We defined the Hilbert function of M by n 7→ dimk Mn. We define the Hilbert series

by HM (t) =
∑

n∈Z(dimMn)t
n.

Example 31.2. HA(t) =
1

(1−t)r+1

Theorem 31.3 (Hilbert–Serre). HM (t) = f(t)
(1−t)r+1 for some f(t) ∈ Z[t, t−1].

Corollary 31.4. There exist a polynomial hM ∈ Q[t] such that hm(t) = dimMn for n >> 0.

Proof of Theorem. Do induction on r. For r = −1 this is trivial. Consider the homomorphism

of graded modules M(−1) ·x0−−→ M. Now the kernel and cokernel are finitely generated graded

A/(x0)-modules, and one can do the induction. □
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Theorem 31.5. Let A a graded ring, M a finitely generated graded A-module, A0 Artinian and

A generated by homogeneous elements xi of degree ki. Then if HM (t) =
∑

n∈Z l(Mn)t
n, then

HM (t) = f(t)∏
i(1−tki )

31.1. Filtered modules. Let A be a Noetherian ring and q an ideal. We consider filtrations

compatible with q, in the sense that qMi ⊆Mi+1.

We consider the function n 7→ l(M/Mn). We will prove it eventually is a polynomial.

Definition 31.6. We form A = A⊕ q⊕ q2 ⊕ · · · and M = M0 ⊕M1 ⊕ · · · . So A is a graded ring

and M is a graded A-module.

32. 22/11/2019

Lemma 32.1. A is Noetherian.

Proof. Hilbert basis theorem: it is generated as an A-algebra by (finitely many) generators of

q. □

Proposition 32.2. The following are equivalent: (1) Mn+1 = qMn for n >> 0, (2) M is a finitely

generated A-module.

In such case, we call the filtration q-stable.

Proof. (1) =⇒ (2) is clear, since each Mi is finitely generated.

For the converse, choose homogeneous generators zi of degree di. Then Mn =
∑

i q
n−dizi, and

so for n > di for all i we have Mn+1 = qMn. □

Lemma 32.3 (Artin–Rees). Let M• be a q-adic filtered module that if finitely generated over a

Noetherian A. For N ⊆M, we consider the induced filtration. If M• is stable, then N• also is.

Proof. N ⊆M, and since A is Noetherian, the claim follows. □

Theorem 32.4 (Samuel’s theorem). Let A be a Noetherian ring, M• a finitely generated q-filtered

A-module. Suppose l(M/qM) < ∞ and M• is q-stable. Then there exist a polynomial (Hilbert–

Samuel polynomial) PM•(t) ∈ Q[t] such that l(M/Mn) = PM•(n) for n≫ 0. Moreover, the leading

term only depends on M, q.

Proof. Note l(M/qM) <∞ iff SuppM ∩ V (q) consist of maximal ideals.
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Replace A by A/(Ann M), so that we may assume Ann M = 0. Then this means SuppM =

SpecA, and so SpecA/q = V (q) consist only of maximal ideals. This means A/q is Artinian.

gr•(A) is finitely generated by elements of degree 1, and gr•(M) is a finitely generated gr•(A)-

module (as M• is q-stable). Now apply Hilbert–Serre.

The claim about the leading term follows from the fact that qnM ⊆ Mn ⊆ qn−mM for some

fixed m. □

33. 25/11/2019

Definition 33.1. For d ≥ degPM , write pM (n) = e(d,M)n
d

d! + · · · . We call e(d,M) ∈ Z the

multiplicity.

Proposition 33.2. If 0 → N → M → Q → 0, then deg pN ≤ deg pM and pM ≡ pN + pQ

mod xdeg pN−1.

Proof. If M• is any q-filtration, then p is additive if we take the induced filtrations on M. Now the

claim follows from Artin–Rees. □

Corollary 33.3. If d ≥ deg pM , then e(d,M) = e(d,N) + e(d,Q).

33.1. Dimension theory.

Definition 33.4. For a module M, we define dimM = sup{r : p0 ⊂ · · · ⊂ pr} for primes pi ∈

SuppM.

Proposition 33.5. If M is Noetherian, then dimM = max{dimA/p : p is minimal among primes in SuppM}.

Proof. There are finitely many minimals elements of SuppM, and every q ∈ SuppM contains such

a minimal element. □

Assume from now on that A is Noetherian local, and q be m primary (same as q ⊇ mn, same as

l(A/q) <∞ and q ̸= 0).

Let M be a nonzero finitely generated module.

Then d(M) := deg pM does not depends on q.

Definition 33.6. Let s(M) be the smallest s such that there are x1, . . . , xs ∈ m with l(M/(x1, . . . , xs)) <

∞. These are called a system of parameters.
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Remark 33.7. This correspond to a local “chart” that is finite-to-1.

Theorem 33.8 (Dimension theorem). dimM = d(M) = s(M).

Lemma 33.9. If x ∈ m, then s(M) ≤ s(M/xM)+1. If x does not vanish on any irreducible com-

ponent of SuppM of maximal dimension, then dimM/xM + 1 ≤ dimM. If x is not a zerodivisor

on M, then d(M/xM) ≤ d(M)− 1.

Proof. The first two are trivial. For the last, we have 0→M
x−→M →M/xM, and so d(M/xM) <

d(M). □

34. 27/11/2019

Proposition 34.1. dimM ≤ d(M).

Proof. Base case: d(M) = 0, in which case mnM stabilize. By Nakayama, we have mnM = 0.

Now SuppM = V (AnnM) ⊆ V (mn) = {m}. Hence dimM = 0.

Let p0 ⊂ p1 ⊂ · · · ⊂ pr be a maximal chain in SuppM. Then dimM = dimA/p0. p0 is a minimal

prime, so p0 is an associated prime and let N ⊆ M isomorphic to A/p0. Then d(N) ≤ d(M),

and so it suffices to prove r ≤ d(N). Choose x ∈ p1 \ p0. Then p1 ⊂ · · · ⊂ pr ⊂ N/xN. So

d−1 ≤ dimN/xN ≤ d(N/xN) by induction. And then by the lemma we have d(N/xN) ≤ d(N)−1

since x is not a zerodivisor. □

Proposition 34.2. d(M) ≤ s(M).

Proof. Let x1, . . . , xs be a minimal system of parameters. Since (x1, . . . , xs) ⊆ m, we have d(M) ≤

d((x1, . . . , xs)
•M). By Samuel’s theorem, this is at most s. □

Proposition 34.3. s(M) ≤ dimM.

Proof. Base case dimM = 0: then SuppM = {m}, so M has finite length.

Consider {p ∈ SuppM : dimA/p = dimM} which are contained in the minimal primes of

SuppM, which is a finite set. m is not in such set if dimM > 0. Choose x ∈ m outside such set.

By the lemma, we have dimM/xM ≤ dimM − 1. Also by the lemma, s(M) ≤ s(M/xM), and we

are done. □

Corollary 34.4. Let (A,m) be a Noetherian local ring with residue field k. Then dimm/m2 ≥

dimA.
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Proof. By Nakayama we have that dimm/m2 is the minimal number of generators of m, which

serves as a system of parameters, hence is at least s(A). □

34.1. Height.

Definition 34.5. Let p be a prime of a ring A. Then its height h(p) is dimAp.

Theorem 34.6. Let A be a Noetherian ring and f1, . . . , fr ∈ A. Let p be a prime minimal among

primes that contain (f1, . . . , fr). Then h(p) ≤ r.

Proof. By the assumptions, the only prime ideal in Ap/(f1, . . . , fr) is p. Hence r ≥ s(Ap) =

h(p). □

35. 02/12/2019

Krull’s principal ideal theorem, regularity, inverse limits

36. 04/12/2019

Theorem 36.1. Given a short exact sequence 0→ A• → B• → C• → 0, then the inverse limit is

left exact, and is right exact if A• has only surjective maps.

Proof. Think of the inverse limit as the kernel of ΘA :
∏

An →
∏

An given by (xi) 7→ (xi −

im(xi+1)), and apply Snake lemma. □

Definition 36.2. For a ring A with an ideal I, define the completion Â := lim←−
n

A/In. For a module

M, M̂ := lim←−
n

M/In.

Proposition 36.3. For a topological abelian group, M → M̂ is injective if and only if M is

separated (i.e. Hausdorff).

37. 06/12/2019

Theorem 37.1. Let A be a local ring. Then Â is flat A-module, we have A/mn ≃ Â/mn. Â is

complete, and m ⊆ Â.
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38. 09/12/2019

Theorem 38.1. If A is a Noetherian local ring, then so is Â. They have the same dimension, and

Â is regular if and only if A is.

Proof. We clearly have that m̂ is maximal. But it is contained in the radical, and so m̂ is the

unique maximal ideal. Since gr• A ≃ gr• Â, the right one must be Noetherian. Now let I be an

ideal of Â, with the induced filtration Fil•I. Then gr• I is an ideal of a Noetherian ring, so is finitely

generated. Take homogeneous generators for it, and take lifts. Then using that Â is complete and

the Krull intersection theorem, we can prove they generate I.

By the above, the quotients of the filtration are isomorphic, and so the Hilbert–Samuel polyno-

mials are the same, so dim Â = dimA.

Regularity also follows since m/m2 ≃ m̂/m̂2. □

38.1. DVRs.

Definition 38.2. A discrete valuation ring is the ring of integers of a discrete valued field.

One can check that for t a uniformizer, that m = (t), and so the ideals are only me = (te). Hence

it is regular of dimension 1.

39. 11/12/2019

39.1. Depth.

Definition 39.1. For a ring A and a module M. Consider sequences x1, . . . , xn ∈ A and let

Mi = M/(x1, . . . , xi)M. xi is a M -regular sequence if for all i, xi ̸∈ z.div(Mi−1).

Remark 39.2. If M is Noetherian, this means all components of Mi−1 (including embedded) get

cut out.

Definition 39.3. For an ideal a with aM ⊂ M, let deptha M be the supremum of M -regular

sequences contained in a.

Example 39.4. Let A = k[x, y](x,y) and M = A/(xy, y2). Then depthM = 0 since (x, y) is an

embedded component.

Let P1, P2 be two A2 inside A4 meeting transversely. Then any attempt at cutting will still have

an embedded prime.
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Assume for simplicity that A is local Noetherian and M is finitely generated.

Proposition 39.5. depthM = 0 if an only if a ∈ AssM, and depthM ≤ dimM. If equality holds,

we call M Cohen–Macaulay.

Theorem 39.6. A is a DVR if and only if it is (1) normal domain of dimension 1, (2) normal

domain of depth 1, (3) regular ring of dimension 1, (4) m is pricipal and height(m) ≥ 1.
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