18.705: COMMUTATIVE ALGEBRA, FALL 2019

BJORN POONEN, NOTES BY MURILO ZANARELLA

Contents

Problem sets	2
1. 04/09/2019	2
2. 6/09/2019	3
3. $09 / 09 / 2019$	4
4. 11/09/2019	6
5. 13/09/2019	6
6 6. 16/09/2019	7
7. 18/09/2019	8
8. 23/09/2019	8
9. 25/09/2019	9
10. 27/09/2019	9
11. 30/09/2019	9
12. 02/10/2019	10
13. 04/10/2019	11
14. 07/10/2019	12
15. 09/10/2019	13
16. 11/10/2019	13
17. 16/10/2019	13
18. 18/10/2019	13
19. 21/10/2019	14
20. 23/10/2019	14
21. 25/10/2019	15
22. 28/10/2019	15
23. 30/10/2019	16
24. 31/10/2019	18
25. 04/11/2019	18
26. $06 / 11 / 2019$	18
27. 08/11/2019	20
28. 13/11/2019	21
29. 15/11/2019	22
$330.18 / 11 / 2019$	22
31. 20/11/2019	23

32. $22 / 11 / 2019$ 24
33. $25 / 11 / 2019$ 25
34. 27/11/2019 26
35. 02/12/2019 27
36. 04/12/2019 27
37. $06 / 12 / 2019$ 27
38. 09/12/2019 28
39. 11/12/2019 28

PROBLEM SETS

Altman-Kleiman
Website

1. $04 / 09 / 2019$

Goal: study interesting comutative rings using the language of category theory, and geometryic intuition when appropriate.

Rings are commutative.

Example 1.1. The following are rings
(1) $\{0\}$,
(2) fields,
(3) rings of integers in number fields,
(4) $k[t]$ for a (algebraically closed) field k (regular functions on the affine line \mathbb{A}^{1}), $k\left[t_{1}, \ldots, t_{n}\right]$, quotients, etc.

1.1. Universal properties.

Definition 1.2. Given a ring A and an ideal $I \subseteq A$, the quotient ring is a ring A / I, equipped with ring homomorphism $A \rightarrow A / I$, sending I to 0 , and such that for any other wing B and a map $A \rightarrow B$ killing I, then there is a unique map $f: A / I \rightarrow B$ such that

Remark 1.3. By general category theory such A / I is unique up to unique isomorphism.

Definition 1.4. Let A be a ring. The polynomial algebra in one variable over A is an A-algebra $A[t]$ equipped with a distinct element $t \in A[t]$ such that for any other such pair (B, b), there is a unique map $f: A[t] \rightarrow B$ with

Remark 1.5. It generalizes to any set indexing the variables.

Definition 1.6. Let A_{1}, and A_{1} be rings. The product ring $A_{1} \times A_{2}$ equipped with homomorphisms $p_{i}: A_{1} \times A_{2} \rightarrow A_{i}$ for $i \in\{1,2\}$ such that for an other such ring P, there is a unique map $f: P \rightarrow A_{1} \times A_{2}$ such that

Remark 1.7. Generalizes to any index set I.

Remark 1.8. In $A_{1} \times A_{2}$, one has idempotents $e_{1}:=(1,0)$ and $e_{2}:=(0,1)$. Conversely, if A is a ring with an idempotent $e \in A$, then

$$
\begin{aligned}
& A \longrightarrow A_{1} \times A_{2} \\
& a \longmapsto(a e, a(1-e))
\end{aligned}
$$

where $A_{1}:=A e$ and $A_{2}:=A(1-e)$ with identities e and $1-e$.

Warning 1.9. There is no such thing as a direct sum of rings $(A \rightarrow A \times B$ is not a ring homomorphism).

$$
\text { 2. } 6 / 09 / 2019
$$

Definition 2.1. Given ideals I and J, we define the colon ideal or transporter

$$
(I: J)=\{a \in A: a J \subseteq I\}
$$

Definition 2.2. A subset $S \subseteq A$ is multiplicative if S is closed under finite products.

Definition 2.3. An ideal \mathfrak{p} is prme if $A \backslash \mathfrak{p}$ is multiplicative.

Definition 2.4. We define the spectrum $\operatorname{Spec} A$ to be the set of all prime ideals.

Proposition 2.5. A ring homomorphism $A \rightarrow B$ induces a map $\operatorname{Spec} B \rightarrow \operatorname{Spec} A$.

Proposition 2.6. An ideal $I \subset A$ is maximal if and only if A / I is a field, and prime if and only if A / I is a domain.

Definition 2.7. Given a domain A, its fraction field $\operatorname{Frac}(A)$ is universal among fields F equipped with an injective ring homomorphsim $A \rightarrow F$.

Definition 2.8. Given a domain A and $P=A\left[t_{i}\right]$, we denote the order of vanishing ord f to the minimum of the degree of the monomials.

Definition 2.9. If K is a field, we denote the field of rational functions $K\left(t_{i}\right)$ to be the fraction field of $K\left[t_{i}\right]$.

3. 09/09/2019

Lemma 3.1. Let S be a multiplicative subset of A and I an ideal with $I \cap S=\emptyset$. Let $\mathfrak{J}=\{J \supseteq$ $I: J \cap S=\emptyset\}$. Then \mathfrak{J} has a maximal element \mathfrak{p}, and any such \mathfrak{p} is a prime ideal.

Proof. For any such \mathfrak{p}, and any $x \notin \mathfrak{p}$, we have $(\mathfrak{p}+(x)) \cap S \neq \emptyset$. So $A \backslash \mathfrak{p}=\{x \in A: p+(x) \cap S \neq \emptyset\}$. Now the claim is that $A \backslash \mathfrak{p}$ is a multiplicative set.

3.1. Radicals.

Definition 3.2. Let $I \subseteq A$ be an ideal. Then $\sqrt{I}:=\left\{x \in A: x^{n} \in I\right.$ for some $\left.n\right\}$.

Example 3.3. Is \mathfrak{p} is prime, then $\sqrt{\mathfrak{p}}=\mathfrak{p}$.

Theorem 3.4. We have

$$
\sqrt{I}=\bigcap_{\mathfrak{p} \supseteq I \text { prime }} \mathfrak{p} .
$$

Proof. If $\mathfrak{p} \supseteq I$, then $\sqrt{I} \supseteq \sqrt{\mathfrak{p}}=\mathfrak{p}$. For the other inclusion, consider $x \notin \sqrt{I}$. Apply the lemma with $S=\left\{1, x, x^{2}, \ldots\right\}$, which is disjoint to I. Then we get a prime ideal $\mathfrak{p} \supseteq I$ disjoint to S. This means $x \notin \mathfrak{p}$.

Definition 3.5. For the ideal 0 , nil $A:=\sqrt{0}$ is called the nilradical of A, which is the intersection of all prime ideals.

Definition 3.6. A ring A is reduced if $\sqrt{0}=0$.

Definition 3.7. The Jacobson radical of a ring is $\operatorname{rad} A:=\bigcap_{\mathfrak{p} \text { maximal }} \mathfrak{p}$.
Remark 3.8. Later we will prove that if A is a finitely generated algebra over a field or over \mathbb{Z}, then $\operatorname{nil} A=\operatorname{rad} A$, which is a version of the Nullstellensatz.

Proposition 3.9. If $u \in A^{\times}$, then $u+\operatorname{rad} A \subseteq A^{\times}$.

Proof. If $u+v \notin A^{\times}$, then it belong to a maximal ideal.

Corollary 3.10. We have $\operatorname{rad} A=\left\{x \in A: 1-a x \in A^{\times}\right.$for all $\left.a \in A\right\}$.

Proof. \subseteq is clear. Now if $x \notin \operatorname{rad} A$ it is not in some maximal ideal \mathfrak{m}. Then $\mathfrak{m}+(x)=A$, so we have $m+a x=1$ for $m \in \mathfrak{m}$, which means $1-a x=m$ is not a unit.

Example 3.11. Consider $A=k[[t]]$ for a field k. Consider $\mathfrak{m}=t k[[t]]$. Note $A^{\times}=A \backslash \mathfrak{m}$, and that this means A is local, and all ideals are \mathfrak{m}^{n} for varying $n \geq 0$. So $\operatorname{rad} A=\mathfrak{m}$ and nil $A=0$.

Definition 3.12. A ring A with exactly one maximal ideal is called a local ring, and the quotient A / \mathfrak{m} is called its residue field.

Definition 3.13. A ring A with finitely many maximal ideals is called a semilocal ring.

3.2. Spectrum.

Definition 3.14. We turn $\operatorname{Spec} A$ into a topological space by taking the closed sets to be

$$
V(I):=\{\mathfrak{p} \text { prime }: \mathfrak{p} \supseteq I\}
$$

for ideals $I \subseteq A$. Note $V(I) \cup V(J)=V(I \cap J)$ and $\bigcap_{i} V\left(I_{i}\right)=V\left(\sum_{i} I_{i}\right)$. This is called the Zariski topology.

Proposition 3.15. $V(I)=\emptyset \Longleftrightarrow I=A$ and $V(I)=\operatorname{Spec} A \Longleftrightarrow A \subseteq$ nil A. Moreover, $V(I)=V(J) \Longleftrightarrow \sqrt{I}=\sqrt{J}$.

Example 3.16. Let k be an algebraically closed field and $A=k[t]$. Then Spec A is $k \cup\{\eta\}$ with the profinite topology on k and whose all nonempty open sets contain η, that is $\overline{\{\eta\}}=\operatorname{Spec} A$.

Definition 4.1. For any subset $S \subseteq \operatorname{Spec} A$, we say a point $p \in \operatorname{Spec} A$ is a generic point for S if $S=\overline{\{p\}}$.

Proposition 4.2. A point $\mathfrak{p} \in \operatorname{Spec} A$ is closed if and only if \mathfrak{p} is a maximal ideal.

Proof. This is since $\overline{\{\mathfrak{p}\}}=V(\mathfrak{p})$.

Example 4.3. Let $A=k[x, y]$ for k algebraically closed. Then the points of $\operatorname{Spec} A$ correspond to the ideals of the form $(x-a, y-b)$, to irreducible polynomials and to the zero ideal.

Definition 4.4. A topological space is irreducible if it is nonempty and is not a union of two proper closed subsets.

Proposition 4.5. The irreducible closed subsets of $\operatorname{Spec} A$ are precisely the sets of the form $V(\mathfrak{p})$ for primes \mathfrak{p}.

Proof. It is easy to see that $V(\mathfrak{p})$ is irreducible. Conversely, consider $V(I)$ with I radical and not prime. If $a b \in I$ but $a, b \notin I$, then $V(I)=V(I+(a)) \cap V(I+(b))$.

Definition 4.6. An irreducible component of a topological space X is a maximal irreducible (closed) subset. The analogous notion in commutative algebra is of a minimal prime.

Theorem 4.7. Let I be an ideal of A. Then

$$
\sqrt{I}=\bigcap_{\mathfrak{p}} \mathfrak{p}
$$

where \mathfrak{p} varies over minimal primes over I.

Proof. Obvious from the previous version and Zorn's lemma.
5. 13/09/2019

Proposition 5.1. A is a domain if and only if A is reduced and $\operatorname{Spec} A$ is irreducible.

Proof. If A is a domain it is clear. Otherwise, Since $\operatorname{Spec} A$ has only on component, it has only one minimal prime, and it must be $\sqrt{0}=0$. Hence 0 is prime, that is, A is a domain.

Proposition 5.2. Spec is a contravariant functor.

5.1. Modules.

Definition 5.3. The kernel of f is a pair (K, i) universal among the pairs such that $K \xrightarrow{i} M \xrightarrow{f} N$ is 0 . The cokernel is (C, q) universal among the ones such that $M \xrightarrow{f} N \xrightarrow{q} C$ is 0 . The image of f is the kernel of the cokernel, and the coimage is the cokernel of the kernel, and they are isomorphic.

Theorem 5.4. If A is a PID, then any submodule of a free A-module is free.

Proof. Let F be a submodule of the free module E. By the axiom of choice, we may take a well ordered I with $E=\bigoplus_{i \in I} A$, with projections π_{i}. Let $E_{i}=\bigoplus_{j \leq i} A$, and $F_{i}=F \cap E_{i}$. Then $\pi_{i}\left(F_{i}\right)=\left(c_{i}\right)$ for some $c_{i} \in A$. If $c_{i} \neq 0$, we choose $f_{i} \in F_{i}$ such that $\pi_{i}\left(f_{i}\right)=c_{i}$. Then it is easy to see that f_{i} form a basis for F.

6. $16 / 09 / 2019$

Proposition 6.1. Given an exact sequence $0 \rightarrow N \xrightarrow{\alpha} M \xrightarrow{\beta} P \rightarrow 0$, the following are equivalent:
(1) it is isomorphic to $0 \rightarrow N \rightarrow N \oplus P \rightarrow P \rightarrow 0$,
(2) there exist a section $s: P \rightarrow M$ such that $\beta \circ s=\mathrm{id}$,
(3) there exist a retraction $r: M \rightarrow N$ such that $r \circ \alpha=\mathrm{id}$.

Lemma 6.2 (Snake lemma). Given a commutative diagram

with exact rows, we get an exact sequence

$$
0 \rightarrow \operatorname{ker}\left(\gamma^{\prime}\right) \rightarrow \operatorname{ker}(\gamma) \rightarrow \operatorname{ker}\left(\gamma^{\prime \prime}\right) \rightarrow \operatorname{coker}\left(\gamma^{\prime}\right) \rightarrow \operatorname{coker}(\gamma) \rightarrow \operatorname{coker}\left(\gamma^{\prime \prime}\right) \rightarrow 0
$$

Definition 6.3. A presentation of M is an exact sequence $F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ with F_{0}, F_{1} free. Then M is finitely generated if F_{0} can be chosen with finite rank, and finitely presented is F_{0} and F_{1} can be chosen of finite rank.

Example 6.4. $A=k[t, u]$ and $M=(t, u)$ then $A \rightarrow A^{2} \rightarrow M \rightarrow 0$ with $z \mapsto(u z,-t z)$ and $(x, y) \rightarrow x t+y u$.

7. $18 / 09 / 2019$

Definition 7.1. For a ring A and a module M, we have functors

$$
\operatorname{Hom}(M, \cdot): \operatorname{Mod}_{A} \rightarrow \operatorname{Mod}_{A} \quad \text { and } \quad \operatorname{Hom}(\cdot, M): \operatorname{Mod}_{A} \rightarrow \operatorname{Mod}_{A}^{\mathrm{op}} .
$$

Definition 7.2. For categories \mathscr{C}, \mathscr{D}, an additive functor $F: \mathscr{C} \rightarrow \mathscr{D}$ is such that the maps $\operatorname{Hom}(A, B) \rightarrow \operatorname{Hom}(F A, F B)$ are group homomorphisms.

Definition 7.3. For contravariant functors $F: \mathscr{C} \rightarrow \mathscr{D}$, we define left/right exact by applying the definition to $F: \mathscr{C}^{\text {op }} \rightarrow \mathscr{D}$.

Theorem 7.4. Both Hom functors are left exact.

Theorem 7.5. Let A be a ring, P a module. The following are equivalent, and when they are true we say P is projective.
(1) Given $M \rightarrow N$ and $P \rightarrow N$, there is a $P \rightarrow M$ that is compatible.

(2) Every short exact sequence $0 \rightarrow K \rightarrow M \rightarrow P \rightarrow 0$ splits.
(3) P is a direct summand of a free module.
(4) $\operatorname{Hom}(\cdot, P)$ is exact.

Proof. (1) $\Longrightarrow(2)$: Use 1 with $P=N$ to get a section.
$(2) \Longrightarrow(3):$ Take M free and use (2).
(3) \Longrightarrow (4): Suppose $K \oplus P$ is free. Then $\operatorname{Hom}(K \oplus P, \cdot)$ is exact, and $\operatorname{Hom}(K \oplus P, \cdot)=$ $\operatorname{Hom}(K, \cdot) \oplus \operatorname{Hom}(P, \cdot)$, so both must be exact, which implies (4).
$(4) \Longrightarrow(1):$ Apply $\operatorname{Hom}(P, \cdot)$ to $0 \rightarrow K \rightarrow M \rightarrow N \rightarrow 0$, and so in particular $\operatorname{Hom}(P, M) \rightarrow$ $\operatorname{Hom}(P, N) \rightarrow 0$, which is what we want.
8. $23 / 09 / 2019$

Categories, colimits.

More on colimits.
10. $27 / 09 / 2019$

Proposition 10.1. For a colimit $\underset{i}{\lim } M_{i}$ in modules of A and N is an A-module, apply $\operatorname{Hom}(N, \cdot)$ to the limit. Then we have a map $\theta: \underset{i}{\lim } \operatorname{Hom}\left(N, M_{i}\right) \rightarrow \operatorname{Hom}\left(N, \underset{i}{\lim } M_{i}\right)$.

Now suppose the limit is filtered.
(1) If N is finitely generated, then θ is injective.
(2) If N is finitely presented, then θ is an isomorphism.

Proof of (1). Let n_{1}, \ldots, n_{m} be generators of N. Let $f \in \underset{i}{\lim } \operatorname{Hom}\left(N, M_{i}\right)$. Say it is represented by $f: N \rightarrow M_{i}$. If $\theta(f)=0$, then $\theta(f)\left(n_{k}\right)=0$, and this holds in $\underset{i}{\lim } M_{i}$, so there is a j_{k} with $f\left(n_{k}\right)=0$ in $M_{j_{k}}$, so there is a $j>j_{k}$ such that $f=0 \in M_{j}$, so $f=0 \in \underset{i}{\lim } M_{i}$.

Theorem 10.2. Filtered colimits preserve exactness.

Proof. The morphisms $\underset{i}{\lim } L_{i} \rightarrow \underset{i}{\lim } M_{i} \rightarrow \underset{i}{\lim } N_{i}$ come from the universal properties and their composition is 0 . If $m \in \underset{i}{\lim } M_{i}$ is in the kernel, then it is $m \in M_{i}$, and since it maps to 0 , we can further choose i such that $M_{i} \rightarrow N_{i}$ maps m to 0 . This means m is in the image of $L_{i} \rightarrow M_{i}$, and so that it is in the iamge of $\underset{i}{\lim } L_{i} \rightarrow \underset{i}{\lim } M_{i}$.
11. $30 / 09 / 2019$

Tensors.

Theorem 11.1. For N a (A, B)-bimodule, $\otimes_{A} N$ and $\operatorname{Hom}_{B}(N, \cdot)$ is an adjoint pair.

Corollary 11.2. $\otimes_{A} N$ preserves colimits, and is right exact.

Theorem 11.3 (Watts 1960). Any A-linear functor $F: \operatorname{Mod}_{A} \rightarrow \operatorname{Mod}_{A}$ that preserves direct sums and cokernels is isomorphic to $\otimes_{A} P$ for some $P=F(A)$. In general, if F does not preserves direct sums and cokernels, then we only have a natural transformation $\Theta: \otimes_{A} P \rightarrow F$ such that $\Theta(A)$ is the identity.
12. $02 / 10 / 2019$

Definition 12.1. For a ring A and an A-module M, let $T M, \bigwedge M=T M /(m \otimes m)$ and $\operatorname{Sym} M=$ $T M /(a \otimes b-b \otimes a)$ be the tensor algebra, the exterior algebra, and the symmetric algebra.

Example 12.2 (Determinant). If M is a free A-module of rank r, then $\operatorname{det} M:=\bigwedge^{r} M$ is free of rank 1. If $f: M \rightarrow M$ is a linear map, this induces a map $\bigwedge^{r} f: \bigwedge^{r} M \rightarrow \bigwedge^{r} M$, and this is multiplication by the determinant.

12.1. Flatness.

Definition 12.3 (Serre, ~1955). The functor $\otimes_{A} M$ is always right exact. We call M flat if it is also left exact.

Lemma 12.4. $\bigoplus_{i \in I} M_{i}$ is flat if and only if all M_{i} are flat.

Proof. Follows from the distributivity of \oplus and \otimes.

Corollary 12.5. Projective modules are flat.

Remark 12.6. $\otimes_{A} M$ is faithful if and only if $N \otimes M \rightarrow P \otimes M$ being 0 implies $N \rightarrow P$ to be 0.

Definition 12.7. M is faithfully flat if M is flat and faithful.

Example 12.8. Nonzero free modules.

Proposition 12.9. Suppose $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ with M_{3} flat. Then tensoring with any N preserves the exactness. Moreover, M_{1} is flat if and only if M_{2} is flat.
13. $04 / 10 / 2019$

Proof. Take a presentation $0 \rightarrow K \rightarrow F \rightarrow N$ and tensor the initial sequence, use snake lemma on the first two rows.

For the second part, again take any injection $N^{\prime} \rightarrow N$ and tensor it with the initial sequence and apply the snake lemma.
13.1. Geometric interpretation of flatness. For a prime $\mathfrak{p} \subseteq A$, let $k(\mathfrak{p})=\operatorname{Frac}(A / \mathfrak{p})$. We have $A \rightarrow A / \mathfrak{p} \hookrightarrow k(\mathfrak{p})$, which induces $\operatorname{Spec} k(\mathfrak{p}) \rightarrow \operatorname{Spec} A / \mathfrak{p} \rightarrow \operatorname{Spec} A$. Now Spec A / \mathfrak{p} is an irreducible closed subset of $\operatorname{Spec} A$, with $\operatorname{Spec} k(\mathfrak{p})$ mapping to its generic point.

Now given a module M, we a family of vector spaces $M \otimes_{A} k(\mathfrak{p})$. M being flat is kinda of equivalent to $M \otimes k(\mathfrak{p})$ being well-behaved over \mathfrak{p}. Faithfully flat is kinda of equivalent to $M \otimes k(\mathfrak{p})$ being well-behaved and non zero (if M is a A-algebra, this is the same as the projection being surjective).

Theorem 13.1 (Lazard's Theorem). M is flat if and only if it is a filtered colimit of free modules of finite rank.

13.2. Cayley-Hamilton.

Theorem 13.2 (Cayley-Hamilton). Let A be a ring, and $X \in M_{n}(A)$. Then $\operatorname{det}(T I-X)(X)=0$

Proof. Prove for the generic matrix by choosing an embedding to \mathbb{C} and diagonalizing.

Theorem 13.3 (Determinant trick). For A a ring and a finitely generated module M with an endomorphism $\phi: M \rightarrow M$, Choose a basis of M and write ϕ as a matrix X. Then $P_{X}(\phi)=0 \in$ $\operatorname{End}(M)$.

Proof. Just note that it is true for free modules, and hence for its quotients.

Lemma 14.1. Let M be a finitely generated A-module, and $I \subseteq A$ an ideal. If $M=I M$, then there is $b \in I$ such that $(1+b) M=0$.

Proof. Choose generators m_{i} of M, and write relations $m_{i}=\sum_{j} a_{i j} m_{j}$ with $a_{i j} \in I$. Then use Cayley-Hamilton.

Lemma 14.2 (Nakayama's lemma). Let A be a ring, $I \subseteq \operatorname{rad}(A)$ be an ideal. Then for a finitely generated module $M, M=I M$ implies $M=0$.

Proof. Apply the lemma. There is $b \in I$ with $(1+b) M=0$. But $1+b$ is a unit, hence $M=0$.

Corollary 14.3. Let A be a local ring with maximal ideal \mathfrak{m}, and M a finitely generated module. Consider m_{1}, \ldots, m_{n}. Then m_{i} generate M if and only if they generate $M / \mathfrak{m} M$.

Proof. Let N be the module generated by the m_{i}. Let $Q=M / N$. Then we have an exact sequence $N / \mathfrak{m} N \rightarrow M / \mathfrak{m} M \rightarrow Q / \mathfrak{m} Q \rightarrow 0$. Now by Nakayama, $Q / \mathfrak{m} Q=0$ if and only if $Q=0$, which is what we want.

Remark 14.4. There is an analogue in group theory: if G is a p-group, g_{i} generate G if and only if they generate the Frattini quotient $G /\left(G^{p}[G, G]\right)$.

Proposition 14.5. Let A be a ring and M an A-module. Then free \Longrightarrow projective \Longrightarrow flat. Moreover, they are all equivalent if A is local and M is finitely presented.

Also, for a projective module, finitely generated \Longrightarrow finitely presented.

Proof. Supose A is local and \mathfrak{m} is the maximal ideal, with $k=A / \mathfrak{m}$. Let M be a flat finitely presented A-module. Choose a basis $\overline{m_{i}}$ for $M \otimes k$, and choose lifts m_{i}. By Nakayama, m_{i} generate M. Since M is finitely generated, there are finitely many m_{i}. So we have a map $A^{n} \rightarrow M \rightarrow 0$. Since M is finitely presented, we may choose this such that $0 \rightarrow L \rightarrow A^{n} \rightarrow M \rightarrow 0$ with L finitely generated. Tensoring with k, and using that M is flat, we conclude $L \otimes k=0$. By Nakayama again, we conclude $L=0$.

For the second claim, let M be finitely generated projective. Doing the same thing as above, $0 \rightarrow L \rightarrow A^{n} \rightarrow M \rightarrow 0$ is split. Then $A^{n} \rightarrow L$ giving the splitting is surjective, and so L is finitely generated.

14.1. Integral extensions.

Definition 14.6. A a ring, B an A-algebra. Then $x \in B$ is integral if x satisfies a monic equation.
Proposition 14.7. x is integral if and only if $A[x]$ is generated as a A-module, if and only if x is contained in an A-subalgebra $C \subseteq B$ that is finitely generated as a A-module.
15. 09/10/2019

Proof. All is easy, except that the last one implies integrality, but this follows from the determinant trick.

Definition 15.1. The integral closure (or normalization) of A over B is the ring of integral elements over B.

Example 15.2. $A=k\left[t^{2}, t^{3}\right]$ is not normal.
16. $11 / 10 / 2019$
17. $16 / 10 / 2019$
18. $18 / 10 / 2019$

We will establish
M has property $P \Longleftrightarrow M_{\mathfrak{m}}$ has property P for all maximal ideals \mathfrak{m}
for several P.

Proposition 18.1. $P=$ "is trivial".
Proof. Take $s \in M$ nonzero, and consider a maximal ideal that contains $\operatorname{Ann}(s)$.

Proposition 18.2. $P=$ "exactness".
Proof. Follows from the above and the exactness of localization.

Proposition 18.3. $P=$ "flatness".
Proof. Follows from the above and the fact that localization and tensor commute.

Corollary 18.4. A module finitely presented M is flat if and only if it is locally free if and only if it is projective.
19.1. Cohen-Seidenberg theory. Setup: A^{\prime} / A integral extension.

Lemma 19.1. Suppose A, A^{\prime} are domains. Then A^{\prime} is a field if and only if A is a field.

Proof. For $x \in A, q / x \in A^{\prime}$ is integral over A, and then we can use this to produce an inverse.
Conversely, is A is a field, we consider a minimal polynomial for any element $y \in A^{\prime}$, and by inverting the constant term let us write an inverse of y.

Definition 19.2. We say $\mathfrak{p}^{\prime} \subseteq A^{\prime}$ lies over $\mathfrak{p} \subseteq A$ if $\mathfrak{p}=\mathfrak{p}^{\prime} \cap A$. Equivalently, if \mathfrak{p}^{\prime} maps to \mathfrak{p} in $\operatorname{Spec} A^{\prime} \rightarrow \operatorname{Spec} A$.

Theorem 19.3. If $\mathfrak{p}^{\prime} / \mathfrak{p}$, then \mathfrak{p}^{\prime} is maximal if and only if \mathfrak{p} is maximal. If $\mathfrak{p}_{1}^{\prime}, \mathfrak{p}_{2}^{\prime}$ are two such distinct primes, no one is contained in the other. Given \mathfrak{p} and $I \subseteq A^{\prime}$ with $I \cap A \subseteq \mathfrak{p}$, then there is such \mathfrak{p}^{\prime} with $I \subseteq \mathfrak{p}^{\prime}$.

Proof. The first statement follows from the lemma for $A / \mathfrak{p} \subseteq A^{\prime} / \mathfrak{p}^{\prime}$.
Now localize at $S=A-\mathfrak{p} \subseteq A^{\prime}-\mathfrak{p}^{\prime}$. Then \mathfrak{p} becomes maximal, and now it follows from the first statement.

Again localize to assume A is local with maximal ideal \mathfrak{p}. Then take a maximal ideal of the extension containing I. It must lie over \mathfrak{p} since it is the only maximal ideal.

Proposition 19.4. Let $L=\operatorname{Frac} A^{\prime}, K=\operatorname{Frac} A$. Then $l \in L$ is in A^{\prime} if and only if its minimal polynomial has coefficients in A.

Theorem 19.5 (Going down theorem). Suppose A, A^{\prime} are domains, with A normal. Given $\mathfrak{q}^{\prime} / \mathfrak{q}$ and $\mathfrak{p} \subseteq \mathfrak{q}$, there is a \mathfrak{p}^{\prime} lying over \mathfrak{p} and with $\mathfrak{p}^{\prime} \subseteq \mathfrak{q}^{\prime}$.

20. 23/10/2019

Proof. Consider the minimal polynomial $F_{a^{\prime}} \in K[x]$ of $a^{\prime} \in K^{\prime}:=\operatorname{Frac} A^{\prime}$. We can prove that if $a^{\prime} \in A^{\prime}$, the $F_{a^{\prime}} \in A[x]$. If in addition $a^{\prime} \in \mathfrak{p} A^{\prime}$, then we can prove $F_{a^{\prime}} \in x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ with $a_{i} \in \mathfrak{p}$.

Now consider $\mathfrak{p} A_{\mathfrak{q}^{\prime}}^{\prime} \cap A$. It contains \mathfrak{p}, but if a is an element of it not in \mathfrak{p}, we have $a=a^{\prime} / s^{\prime}$ with $a^{\prime} \in \mathfrak{p} A^{\prime}$ and $s^{\prime} \in A^{\prime}-\mathfrak{q}^{\prime}$. Then $a^{n} F_{s^{\prime}}(x)=F_{a^{\prime}}(a x)$. By the above, this has coefficients in \mathfrak{p}, and so the same is true for $S_{s^{\prime}}$. So $s^{\prime} \in \mathfrak{p}$, which is a contradiction. Hence $\mathfrak{p} A_{\mathfrak{q}^{\prime}}^{\prime} \cap A=\mathfrak{p}$.

Now let $\mathfrak{p}^{\prime \prime}$ be a ideal maximal along the ones of $A_{\mathfrak{q}^{\prime}}^{\prime}$ containing $\mathfrak{p} A_{\mathfrak{q}}^{\prime}$ and disjoint from $A-\mathfrak{p}$. This exists by the above. We can prove this is a prime ideal, and $\mathfrak{p}^{\prime \prime} \cap A=\mathfrak{p}$. Now $\mathfrak{p}^{\prime}=A^{\prime} \cap \mathfrak{p}^{\prime \prime}$.

Theorem 20.1 (Noether normalization). Let k be a field, A a finitely generated k-algebra, and $I_{1} \subset I_{2} \subset \cdots \subset I_{r} \subset A$ are ideals, then there are algebraically independent $t_{1}, \ldots, t_{m} \in A$ such that A is module-finite over $P:=k\left[t_{1}, \ldots, t_{m}\right]$, and for each $i, I_{t} \cap P=k\left[t_{1}, \ldots, t_{l}\right]$.
21. $25 / 10 / 2019$

Missed
Proof and applications of Noether normalization.

Theorem 21.1. If A is a fnitely generated k-algebra for a field k, then if A is a field, then A is a finite extension of k.
22. 28/10/2019

Theorem 22.1. If A is a finitely generated k-algebra, then $\sqrt{0}=\operatorname{rad} A$.

Proof. Suppose $f \in \sqrt{0}$. Then $\operatorname{Spec} A_{f}$ has the points $\mathfrak{p} \not \supset f$, so $\operatorname{Spec} A_{f} \neq 0$, so $A_{f} \neq 0$. Choose a maximal ideal \mathfrak{m} of A_{f}. Then look at $A \rightarrow A_{f} \rightarrow A_{f} / \mathfrak{m}$, and this get us an ideal $\mathfrak{m} \subseteq A$, and we have a map $A / \mathfrak{m} \hookrightarrow A_{f} / \mathfrak{m}$. Now A_{f} is finitely generated k-algebra, so A_{f} / \mathfrak{m} is a finite extension of k by the previous theorem. Hence A / \mathfrak{m} is a finitely generated k-vector space, hence integral over k. This implies that A / \mathfrak{m} is a field. Now we can see that $f \notin \mathfrak{m}$.

Theorem 22.2 (Hilbert Nullstelensatz). Let A be a finitely generated k-algebra, and I an ideal of A. Then

$$
\sqrt{I}=\bigcap_{\mathfrak{m} \supseteq I} \mathfrak{m}
$$

Proof. Apply the previous theorem to A / I.

22.1. Dimension theory.

Definition 22.3. Given a field extension $L \supseteq k$, let T be a maximal algebraically independent subset of L over k. Then we denote $\operatorname{tr} \cdot \operatorname{deg}(L / k)=\# T$ the transcendental degree of L / k.

Example 22.4. If L is a finitely generated as a field extension over k, then $\operatorname{tr} \operatorname{deg}(L / k)$ is finite, and $L / k(T)$ is a finite extension.

Lemma 22.5. Let A be finitely generated k-algebra which is a domain. Let $K=\operatorname{Frac} A$. Let $d:=\operatorname{tr} . \operatorname{deg}(K / k)$. Suppose we have a chain of prime ideals $\mathfrak{p}_{0} \subset \cdots \subset \mathfrak{p}_{r}$. Then $\sup r=d$, and $r=d$ if and only if the chain is maximal.

Proof. Let $T_{i}=\left(t_{1}, \ldots, t_{d}\right)$. Then we Noether normalization, $\mathfrak{p}_{i} \cap P$ are contained in the chain $T_{0} \subset \cdots \subset T_{d}$, and they are distinct by incomparability. Hence $r \leq d$. Moreover, we will use the going up/down to extend the chain. We of course assume $\mathfrak{p}_{0}=0$ and \mathfrak{p}_{r} maximal, which implies that $\mathfrak{p}_{r} \cap P=T_{d}$. Suppose i is the smallest index with $\mathfrak{p}_{i} \cap P \neq T_{i}$. Then apply going down to A / \mathfrak{p}_{i-1} over P / T_{i-1}, since the bottom one is a domain (is a polynomial ring over k).

Definition 22.6. For any $A \neq 0$ ring, we define its dimension as $\sup r$ for $\mathfrak{p}_{0} \subset \cdots \mathfrak{p}_{r} \subseteq A$.

Theorem 22.7. If A is a finitely generated k-algebra that is a domain, then for $\mathfrak{p} \in \operatorname{Spec} A$, we have $\operatorname{dim} A_{\mathfrak{p}}+\operatorname{dim} A / \mathfrak{p}=\operatorname{dim} A$. In particular, if \mathfrak{m} is a maximal ideal, $\operatorname{dim} A_{\mathfrak{m}}=\operatorname{dim} A$.

$$
\text { 23. } 30 / 10 / 2019
$$

Theorem 23.1. Let A be a finitely generated k-algebra. Consider $\mathfrak{p} \subseteq \mathfrak{q}$ primes of A. Then every maximal chain of primes between them have the same length,

Proof. We may assume $\mathfrak{p}=0$, but then A is a domain, and we are done by the above.

23.1. Noetherianess.

Definition 23.2. A commutative ring A is Noetherian if one of the following equivalent conditions hold.
(1) Every ideal is finitely generated.
(2) A satisfies the ascending chain condition ($I_{1} \subseteq I_{2} \subseteq \cdots$ stabilize).
(3) For any set of ideals S, there is a maximal element.

Definition 23.3. A commutative ring A is Artinian if one of the following equivalent conditions hold.
(1) A satisfies the descending chain condition $\left(I_{1} \supseteq I_{2} \supseteq \cdots\right.$ stabilize $)$.
(2) For any set of ideals S, there is a minimal element.

Proposition 23.4. Quotients an localizations of Noetherian rings are Noetherian.

Lemma 23.5. If A is Noetherian, then so is $A[x]$.

Proof. Let I be an ideal of $A[x]$. Let $I_{n}=\{f \in I: \operatorname{deg} f=n\}$ and $L_{n}=\left\{l c(f): f \in I_{n}\right\} \cup\{0\}$. Then L_{n} is an ideal, and $L_{n-1} \subseteq L_{n}$. Since A is Noetherian, they stabilize to L. This proves that there is n such that I_{n} generate I. Now choose polynomials that generate each L_{m} for $m \leq n$. They generate $A[x]$.

Theorem 23.6 (Hilbert basis). Let A be Noetherian, and B a finitely generated A-algebra. Then B is Noetherian.

Proof. This follows from the two previous results.

Definition 23.7. For a ring A and a module M, M is called Noetherian if one of the following equivalent statements hold.
(1) Every submodule of M is finitely generated.
(2) Satisfies the ascending chain condition.
(3) Every subset of submodules has a maximal element.

Remark 23.8. A is Noetherian if anf only if it is Noetherian as an A-module. One can also define an Artinian module.

Proposition 23.9. Noetherianess and finitely-generatedness of modules is stable under extensions.

Proposition 23.10. Let A be Noetherian and M an A-module. Then M is Noetherian if and only if M is finitely generated if and only if it is finitely presented.

Lemma 23.11. Consider $A \subseteq B \subseteq C$ rings. Suppose A is Noetherian, C is a finitely generated A-algebra and C is integral over B. Then B is a finitely generated A-algebra.

Proof. C is a finitely generated integral B-algebra, so C is finitely generated as a B-module. Write

$$
C=A\left[c_{1}, \ldots, c_{m}\right]=B c_{1}^{\prime}+\cdots+B c_{n}^{\prime}
$$

and write $c_{i}=\sum_{j} b_{i j} c_{j}^{\prime}$ and $c_{i}^{\prime} c_{j}^{\prime}=\sum_{k} b_{i j k} c_{k}^{\prime}$.
Let $B_{0}=A\left[b_{i j}, b_{i j k}\right]$ a finitely generated A-algebra. Then $C=B_{0}+B_{0} c_{1}^{\prime}+\cdots+B_{0} c_{n}^{\prime}$, since it contains c_{i} and is closed under multiplication by c_{i}. Now C is a Noetherian B_{0}-module, and B is a finitely generated B_{0}-module since it is a submodule of C. This implies B is a finitely generatd A-algebra.

Theorem 24.1 (Noether's theorem on invariant subrings). Let k be a Noetherian ring, A a finitely generated k-algebra, and $G \subseteq \operatorname{Aut}_{k-a l g} A$ a finite group. Then A^{G} is also a finitely generated algebra over k. (Slogan: finite quotients of varieties are varieties)

Example 24.2. $A=k\left[x_{1}, \ldots, x_{n}\right], G=S_{n}$, then $A^{G} \simeq k\left[y_{1}, \ldots, y_{n}\right]$.
Proof. We just need to check that A is integral over A^{G} : an element a is a root of $\prod_{g \in G}(x-g a)$.
Lemma 24.3 (Noetherian induction). Let X be a Noetherian space, and \mathscr{P} a property of closed subsets of X. Assume that whenever \mathscr{P} holds for all proper $Z \subset Y$, then \mathscr{P} holds for Y. Then \mathscr{P} holds for any closed subset.

Theorem 24.4 (Chevalley's theorem). Let $A \rightarrow B$ be a homomorphism between finitely generated k-algebras where k is Noetherian. Then $\operatorname{Spec} B \rightarrow \operatorname{Spec} A$ maps constructible sets to constructible sets.

24.1. Associated primes.

Definition 24.5. For a ring A and module M, a prime \mathfrak{p} is an associated prime of M if it is $\mathfrak{p}=\operatorname{Ann}(m)$ for some $m \in M$. Equivalently, M contains a submodule isomorphic to A / \mathfrak{p}. We denote the set of associated primes by Ass M. If I is an ideal, we denote $\operatorname{Ass} I:=\operatorname{Ass}(A / I)$.

$$
\text { 25. } 04 / 11 / 2019
$$

Proposition 25.1. If $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$, then Ass $M_{1} \subseteq$ Ass $M_{2} \subseteq$ Ass $M_{1} \cup$ Ass M_{3}.

Proposition 25.2. If A is Noetherian or M is Notherian, then

$$
\text { z. } \operatorname{div} M=\bigcup_{\mathfrak{p} \in \operatorname{Ass} M} \mathfrak{p}
$$

Proposition 25.3. Ass $M \subseteq \bigcup_{\mathfrak{p} \in \text { Ass } M} V(\mathfrak{p}) \subseteq \operatorname{Supp} M \subseteq V($ Ann M. We have $=$ in the third if A or M is Noetherian and in the fourth if M is finitely generated.

Also, If A or M is Noetherian, then the minimal elements of Supp M are associated primes.
26. $06 / 11 / 2019$

Lemma 26.1. Let M be Noetherian. Then there is a chain $0=M_{0} \subset M_{1} \subset \cdots \subset M_{n}=M$ such that $M_{i} / M_{i-1} \simeq A / \mathfrak{p}_{i}$ for some primes \mathfrak{p}_{i}. For any such chain, Ass $M \subseteq\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\} \subseteq \operatorname{Supp} M$.

Proof. If $M \neq 0$, then Ass $M \neq \emptyset$, so we have $A / \mathfrak{p}_{1} \hookrightarrow M$, so that is M_{1}, and then repeat the process to the quotient. This process terminates since M is Noetherian.

Now the second part of the claim follows from the statement about Ass M under exact sequences.

Corollary 26.2. If M is Noetherian, then Ass M is finite.

Example 26.3 (Geometric interpretation). Assume M is Noetherian finitely generated. Then Supp M is closed, and

$$
\text { Ass } M=\{\text { minimal assoc. primes }\} \sqcup\{\text { nonminimal assoc. primes }\}
$$

so

$$
\text { Ass } M=\{\text { minimal primes containing Ann } M\} \sqcup\{\text { embedded primes }\}
$$

which is

$$
\text { Ass } M=\{\text { irreducible components of } M\} \sqcup\{\text { embedded components }\}
$$

26.1. Primary decomposition. For this entire section, A is Noetherian, and M is a finitely generated A-module.

Definition 26.4. A submodule $N \subseteq M$ is \mathfrak{p}-primary if Ass $M / N=\{\mathfrak{p}\}$. We say it is primary if it is \mathfrak{p}-primary for some \mathfrak{p}.

Definition 26.5. M is coprimary if Ass M is a singleton. Equivalently, $0 \subseteq M$ is primary.

Proposition 26.6. A finite intersection of \mathfrak{p}-primary submodules of M is \mathfrak{p}-primary.

Proof. If N_{1}, N_{2} are two such \mathfrak{p}-primary, then

$$
0 \rightarrow M /\left(N_{1} \cap N_{2}\right) \rightarrow M / N_{1} \oplus M / N_{2}
$$

and hence Ass $M /\left(N_{1} \cap N_{2}\right) \subseteq$ Ass $M / N_{1} \cup$ Ass $M / N_{2}=\{\mathfrak{p}\}$.

Proposition 26.7. For $M \neq 0$, the following are equivalent. (i) M is \mathfrak{p}-coprimary, (ii) \mathfrak{p} is minimal prime containing Ann M, and z . div $M \subseteq \mathfrak{p}$ (iii) $\mathfrak{p}^{n} M=0$ for some $n \geq 1$ and z . div $M \subseteq$ \mathfrak{p}.

Proof. (i) \Longrightarrow (ii): Ass $M=\{\mathfrak{p}\}$, and we have proven that the set of miimal associated primes of M (\mathfrak{p} in this case) are the minimal primes containing Ann M. The second part follows since all associated primes are contained in \mathfrak{p}.
(ii) \Longrightarrow (iii): The second part of (ii) means that $M \rightarrow M_{\mathfrak{p}}$ is injective. Now $\mathfrak{p}^{n} M \hookrightarrow \mathfrak{p}^{n} M_{\mathfrak{p}}$. So we mat reduce to the case $A=A_{\mathfrak{p}}$ and $M=M_{\mathfrak{p}}$, in which case \mathfrak{p} is the maximal ideal. Since \mathfrak{p} is maximal and is minimal containing Ann M, this means $\sqrt{\text { Ann } M}=\mathfrak{p}$. Since \mathfrak{p} is finitely generated, $\mathfrak{p}^{n} M=0$ for some n.
(iii) \Longrightarrow (i): $\mathfrak{p}^{n} \subseteq$ Ann $M \subseteq$ z. div $M \subseteq \mathfrak{p}$. Now for any $\mathfrak{q} \supseteq$ Ann M, we have $\mathfrak{p} \subseteq \mathfrak{q}$. This proves that \mathfrak{p} is a minimal prime containing Ann M, which means it is a minimal associated prime. Since the second part of (iii) means every associated prime is contained in \mathfrak{p}, this concludes the argument.

27. 08/11/2019

Recall we are assuming that A is Noetherian ad M is a finitely generated A-module.

Example 27.1. $I \subseteq A$ is \mathfrak{p}-primary if and only if $\mathfrak{p}^{n} \subseteq A$ and for all $a, b \in A, a b \in I \Longrightarrow a \in$ \mathfrak{p} or $b \in I$.

Corollary 27.2. If M is \mathfrak{p}-coprimary, then $M \hookrightarrow M_{\mathfrak{p}}$. If M is \mathfrak{q}-coprimary for some $\mathfrak{q} \nsubseteq \mathfrak{p}$, then $M_{\mathfrak{p}}=0$.

Theorem 27.3 (Primary decomposition). Let A be Noetherian an M a finitely generated Amodule. Let $N \subseteq M$ be a submodule. Then there is a decomposition $N=\bigcap_{\mathfrak{p} \in \operatorname{Ass} M / N} N^{\mathfrak{p}}$ where each $N^{\mathfrak{p}} \subseteq M$ is \mathfrak{p}-primary. If \mathfrak{p} is minimal in Ass M / N, then $N^{\mathfrak{p}}=\operatorname{ker}\left(M \rightarrow(M / N)_{\mathfrak{p}}\right)$. Moreover, this decomposition commutes with localization.

For the embedded primes, $N^{\mathfrak{p}}$ is not necessarily uniquely determined.

Proof. We say a submodule is irreducible if it is not the intersection of two strictly larger submodules.

By Noetherianess, every submodule can be written as a finite intersection of irreducible submodules.

Now it suffices to prove an irreducible submodule if primary. By quotienting, we may assume 0 is irreducible in M, and need to prove M is coprimary. If not, then there are at least two associated primes $\mathfrak{p}_{1}, \mathfrak{p}_{2}$, but then we have submodules $M_{1} \simeq A / \mathfrak{p}_{1}, M_{2} \simeq A / \mathfrak{p}_{2}$ of M. Now $m \in M_{1}, M_{2}$
would have $\mathfrak{p}_{1}=\operatorname{Ann}(m)=\mathfrak{p}_{2}$ if $m \neq 0$, and this is not the case. Hence $M_{1} \cap M_{2}=0$, and this is a contradiction.

Now we have a decomposition $N=\bigcap_{i} P_{i}$ with Ass $M / N \subseteq\left\{\mathfrak{p}_{i}\right\}$, since $M / N \hookrightarrow \bigoplus_{i} M / P_{i}$. We can remove redundant factors, and then Ass $M / M=\left\{\mathfrak{p}_{i}\right\}$. Let $N^{\prime}=\bigcap_{i \neq j} P_{i}$, so that $N=N^{\prime} \cap P_{j}$, and so $0 \neq N^{\prime} / N \hookrightarrow M / P_{j}$ and $N^{\prime} / N \hookrightarrow M / N$, and so Ass $N^{\prime} / N=\left\{\mathfrak{p}_{i}\right\}$ is contained in Ass M / N.

To prove the uniqueness at minimal primes, consider

δ is injective since $M / N^{\mathfrak{p}}$ is \mathfrak{p}-coprimary. From the injection $M / N \hookrightarrow \bigoplus M / N^{\mathfrak{q}}$, we get the map γ when we localize at \mathfrak{p}, since \mathfrak{p} is a minimal prime in Ass M / N. Now the claim follows from a Snake lemma in the diagram above.

28. 13/11/2019

Theorem 28.1 (Krull intersection theorem). Let A be a Noetherian domain, and $I \subset A$ an ideal. Then

$$
\bigcap_{n \geq 0} I^{n}=0
$$

More generally, if A is a ring and M a Noetherian module, $I \subset A$ an ideal. Let $N=\bigcap I^{n} M$. Then there is $x \in I$ such that $(1+x) N=0$.

Proof. Choose a primary decomposition $I N=\bigcap_{\mathfrak{p}} Q^{\mathfrak{p}}$. We will prove that $N \subseteq Q^{\mathfrak{p}}$ for each \mathfrak{p}. If $I \subseteq \mathfrak{p}$, then $I^{n}\left(M / Q^{\mathfrak{p}}\right)=0$ for n large enough, and so $N \subseteq I^{n} M \subseteq Q^{\mathfrak{p}}$. When $I \nsubseteq \mathfrak{p}$, choose $a \in I \backslash \mathfrak{p}$, and $a N \subseteq I N \subseteq Q^{\mathfrak{p}}$, but a is not a zerodivisor on $M / Q^{\mathfrak{p}}$, so $N \subseteq Q^{\mathfrak{p}}$. Hence $I N=N$, and then the same proof as Nakayama gives the result.

28.1. Jordan-Hölder filtration.

Definition 28.2. Let A be a ring and M a module. We call M simple if $M \neq 0$ and does not have a smaller nontrivial submodule. This is equivalent to $M \simeq A / \mathfrak{m}$ for a maximal ideal \mathfrak{m}.

Definition 28.3. For a decreasing filtration M_{\bullet}, we let the associated graded module gr. M be $\operatorname{gr}_{i}(M)=M_{i} / M_{i+1} . M_{\bullet}$ is a Jordan-Hölder filtration or composition series if each quotient is simple.
29. $15 / 11 / 2019$

Lemma 29.1. Given $0 \rightarrow N \rightarrow M \rightarrow Q \rightarrow 0$ and a filtration of M_{\bullet}, this induces a filtration on N and Q such that $0 \rightarrow N_{\bullet} \rightarrow M_{\bullet} \rightarrow Q_{\bullet} \rightarrow 0$. This also implies $0 \rightarrow \operatorname{gr}_{\bullet}(N) \rightarrow \operatorname{gr}_{\bullet}(M) \rightarrow \operatorname{gr}_{\bullet}(Q) \rightarrow$ 0.

Theorem 29.2 (Jordan-Hölder). If a module M has a Jordan-Hölder filtration, then the multiset $\left\{\operatorname{gr}_{i}(M)\right\}$ is independent of the choice of such filtration. Any filtation can be refined to a Jordan-Hölder filtration. Moreover, $\operatorname{Supp}(M)=\left\{\right.$ maximal ideals $\left.\mathfrak{m}: A / \mathfrak{m} \simeq \operatorname{gr}_{i}(M)\right\}$, and $M \xrightarrow{\sim} \bigoplus_{\mathfrak{m} \in \operatorname{Supp}(M)} M_{\mathfrak{m}}$.

Proof. Note that if M_{\bullet} is a Jordan-Hölder filtration, and any $0 \rightarrow N \rightarrow M \rightarrow Q \rightarrow 0$, then $\left\{\operatorname{gr}_{i}(M)\right\}=\left\{\operatorname{gr}_{i}(N)\right\} \cup\left\{\operatorname{gr}_{i}(Q)\right\}$ as multisets, and so if $M \supset N=N_{1} \supset N_{2} \supset \cdots 0$ is another filtration, then this reduced the problem to N_{1}, and then do the same thing.

The last two claims are clear by localizing.

Definition 29.3. The length $l(M)$ of a module M is the length of a Jordan-Hölder filtration, or ∞ if it does not exist.

Lemma 29.4. M is Artinian and Noetherian if and only if $l(M)<\infty$.

Proof. Since M is Noetherian, we can find maximal proper submodules. This gives a filtration, and it is finite since M is Artinian.

Conversely, any filtration refines to a Jordan-Hölder filtration, so must be finite.

Theorem 29.5. A is Artinian if and only if A is Noetherian and $\operatorname{dim} A=0$.
30. 18/11/2019

Proof. If A is Noetherian and $\operatorname{dim} A=0$, then we proved there is a finite filtration $A \bullet$ with gr• being the quotient of a prime. But $\operatorname{dim} A=0$, so all of these are fields, and hence are simple. So $l(A)<\infty$, hence A is Artinian.
\Longrightarrow : Suppose A is Artinian. Let \mathscr{P} be the set of finite products of maximal ideals. Since A is Artinian, we can find $\mathfrak{p} \in \mathscr{P}$ a minimal element. In particular, this means that for any maximal ideal \mathfrak{m}, we have $\mathfrak{m p}=\mathfrak{p}$. In particular, $\mathfrak{p} \subseteq \operatorname{rad} A$. Now let $\mathscr{I}=\{I \subseteq \mathfrak{p}: I \mathfrak{p} \neq 0$.

If $\mathfrak{p} \neq 0$, then $\mathfrak{p} \in \mathscr{I}$, so $\mathscr{I} \neq \emptyset$, so we can find $I \in \mathscr{I}$ minimal. Then I is principal, since if $a \in I$ is with $A \mathfrak{p} \neq 0$, then $(a) \in \mathscr{I}$, so $I=(a)$. Now also $(I \mathfrak{p}) \mathfrak{p}=I \mathfrak{p} \neq 0$, so $I \mathfrak{p} \in \mathscr{I}$. This implies $I \mathfrak{p}=I$. Hence by Nakayama, we have $I=0$. This is a contradiction.

Hence $\mathfrak{p}=0$, that is, there is a product of maximal ideals which is 0 . Such product also gives us a Jordan-Hölder filtration: If $\mathfrak{m}_{1} \cdots \mathfrak{m}_{n}=0$, then $\left(\mathfrak{m}_{1} \cdots \mathfrak{m}_{i}\right) /\left(\mathfrak{m}_{1} \cdots \mathfrak{m}_{i+1}\right)$ is an Artinian $A / \mathfrak{m}_{i+1^{-}}$ module, hence a finite dimensional vector-space, and so has finite length. This proves that A has finite length, hence A is Noetherian.

Also, $\{$ primes $\}=\operatorname{Supp} A \subseteq\left\{\mathfrak{m}_{i}\right\}$, so A has dimension 0 .

Corollary 30.1. If A is Artinian, then $A=A_{1} \times \cdots \times A_{n}$ for some local Artinian rings A_{i}.
Proposition 30.2. If A is a local Artinian ring, then the maximal ideal is nilpotent.
Proof. Since A is Artinian, $\mathfrak{m}^{n}=\mathfrak{m}^{n+1}$. for some n, and since A is Noetherian, \mathfrak{m}^{n} is finitely generated, so by Nakayama we have $\mathfrak{m}^{n}=0$.

30.1. Graded rings.

Lemma 30.3. Let M be a graded A module, with A finitely generated A_{0}-algebra, M a finitely generated A-module. Then each M_{n} is finitely generated A_{0}-module, and $M_{n}=0$ for $n \ll 0$.

Proof. Let $A=A_{0}\left[a_{1}, \ldots, a_{r}\right]$ with a_{i} homogeneous, and $M=\sum_{i=1}^{s} A m_{i}$ with m_{i} homogeneous. Now $M=\sum_{i, j} A_{0} a_{i} m_{j}$ as an A_{0}-module, and so the claim follows.
31. 20/11/2019

Definition 31.1. Consider the graded ring $A=k\left[x_{0}, \ldots, x_{r}\right]$ and M a finitely generated graded A-module. We defined the Hilbert function of M by $n \mapsto \operatorname{dim}_{k} M_{n}$. We define the Hilbert series by $H_{M}(t)=\sum_{n \in \mathbb{Z}}\left(\operatorname{dim} M_{n}\right) t^{n}$.

Example 31.2. $H_{A}(t)=\frac{1}{(1-t)^{r+1}}$
Theorem 31.3 (Hilbert-Serre). $H_{M}(t)=\frac{f(t)}{(1-t)^{r+1}}$ for some $f(t) \in \mathbb{Z}\left[t, t^{-1}\right]$.
Corollary 31.4. There exist a polynomial $h_{M} \in \mathbb{Q}[t]$ such that $h_{m}(t)=\operatorname{dim} M_{n}$ for $n \gg 0$.

Proof of Theorem. Do induction on r. For $r=-1$ this is trivial. Consider the homomorphism of graded modules $M(-1) \xrightarrow{x_{0}} M$. Now the kernel and cokernel are finitely generated graded $A /\left(x_{0}\right)$-modules, and one can do the induction.

Theorem 31.5. Let A a graded ring, M a finitely generated graded A-module, A_{0} Artinian and A generated by homogeneous elements x_{i} of degree k_{i}. Then if $H_{M}(t)=\sum_{n \in \mathbb{Z}} l\left(M_{n}\right) t^{n}$, then $H_{M}(t)=\frac{f(t)}{\prod_{i}\left(1-t^{k_{i}}\right)}$
31.1. Filtered modules. Let A be a Noetherian ring and \mathfrak{q} an ideal. We consider filtrations compatible with \mathfrak{q}, in the sense that $\mathfrak{q} M_{i} \subseteq M_{i+1}$.

We consider the function $n \mapsto l\left(M / M_{n}\right)$. We will prove it eventually is a polynomial.

Definition 31.6. We form $\bar{A}=A \oplus \mathfrak{q} \oplus \mathfrak{q}^{2} \oplus \cdots$ and $\bar{M}=M_{0} \oplus M_{1} \oplus \cdots$. So \bar{A} is a graded ring and \bar{M} is a graded \bar{A}-module.

32. $22 / 11 / 2019$

Lemma 32.1. \bar{A} is Noetherian.

Proof. Hilbert basis theorem: it is generated as an A-algebra by (finitely many) generators of q.

Proposition 32.2. The following are equivalent: (1) $M_{n+1}=\mathfrak{q} M_{n}$ for $n \gg 0$, (2) \bar{M} is a finitely generated \bar{A}-module.

In such case, we call the filtration \mathfrak{q}-stable.

Proof. (1) $\Longrightarrow(2)$ is clear, since each M_{i} is finitely generated.
For the converse, choose homogeneous generators z_{i} of degree d_{i}. Then $M_{n}=\sum_{i} \mathfrak{q}^{n-d_{i}} z_{i}$, and so for $n>d_{i}$ for all i we have $M_{n+1}=\mathfrak{q} M_{n}$.

Lemma 32.3 (Artin-Rees). Let M_{\bullet} be a \mathfrak{q}-adic filtered module that if finitely generated over a Noetherian A. For $N \subseteq M$, we consider the induced filtration. If M_{\bullet} is stable, then N_{\bullet} also is.

Proof. $\bar{N} \subseteq \bar{M}$, and since \bar{A} is Noetherian, the claim follows.

Theorem 32.4 (Samuel's theorem). Let A be a Noetherian ring, M_{\bullet} a finitely generated \mathfrak{q}-filtered A-module. Suppose $l(M / \mathfrak{q} M)<\infty$ and M_{\bullet} is \mathfrak{q}-stable. Then there exist a polynomial (HilbertSamuel polynomial) $P_{M_{\bullet}}(t) \in \mathbb{Q}[t]$ such that $l\left(M / M_{n}\right)=P_{M_{\bullet}}(n)$ for $n \gg 0$. Moreover, the leading term only depends on M, \mathfrak{q}.

Proof. Note $l(M / \mathfrak{q} M)<\infty$ iff $\operatorname{Supp} M \cap V(\mathfrak{q})$ consist of maximal ideals.

Replace A by $A /(\operatorname{Ann} M)$, so that we may assume $\operatorname{Ann} M=0$. Then this means $\operatorname{Supp} M=$ $\operatorname{Spec} A$, and so $\operatorname{Spec} A / \mathfrak{q}=V(\mathfrak{q})$ consist only of maximal ideals. This means A / \mathfrak{q} is Artinian.
$\mathrm{gr}_{\bullet}(A)$ is finitely generated by elements of degree 1 , and $\mathrm{gr}_{\bullet}(M)$ is a finitely generated $\mathrm{gr}_{\bullet}(A)$ module (as M_{\bullet} is \mathfrak{q}-stable). Now apply Hilbert-Serre.

The claim about the leading term follows from the fact that $\mathfrak{q}^{n} M \subseteq M_{n} \subseteq \mathfrak{q}^{n-m} M$ for some fixed m.

33. $25 / 11 / 2019$

Definition 33.1. For $d \geq \operatorname{deg} P_{M}$, write $p_{M}(n)=e(d, M) \frac{n^{d}}{d!}+\cdots$. We call $e(d, M) \in \mathbb{Z}$ the multiplicity.

Proposition 33.2. If $0 \rightarrow N \rightarrow M \rightarrow Q \rightarrow 0$, then $\operatorname{deg} p_{N} \leq \operatorname{deg} p_{M}$ and $p_{M} \equiv p_{N}+p_{Q}$ $\bmod x^{\operatorname{deg} p_{N}-1}$.

Proof. If M_{\bullet} is any \mathfrak{q}-filtration, then p is additive if we take the induced filtrations on M. Now the claim follows from Artin-Rees.

Corollary 33.3. If $d \geq \operatorname{deg} p_{M}$, then $e(d, M)=e(d, N)+e(d, Q)$.

33.1. Dimension theory.

Definition 33.4. For a module M, we define $\operatorname{dim} M=\sup \left\{r: \mathfrak{p}_{0} \subset \cdots \subset \mathfrak{p}_{r}\right\}$ for primes $\mathfrak{p}_{i} \in$ Supp M.

Proposition 33.5. If M is Noetherian, then $\operatorname{dim} M=\max \{\operatorname{dim} A / \mathfrak{p}: \mathfrak{p}$ is minimal among primes in $\operatorname{Supp} M\}$.

Proof. There are finitely many minimals elements of $\operatorname{Supp} M$, and every $\mathfrak{q} \in \operatorname{Supp} M$ contains such a minimal element.

Assume from now on that A is Noetherian local, and \mathfrak{q} be \mathfrak{m} primary (same as $\mathfrak{q} \supseteq \mathfrak{m}^{n}$, same as $l(A / \mathfrak{q})<\infty$ and $\mathfrak{q} \neq 0)$.

Let M be a nonzero finitely generated module.
Then $d(M):=\operatorname{deg} p_{M}$ does not depends on \mathfrak{q}.

Definition 33.6. Let $s(M)$ be the smallest s such that there are $x_{1}, \ldots, x_{s} \in \mathfrak{m}$ with $l\left(M /\left(x_{1}, \ldots, x_{s}\right)\right)<$ ∞. These are called a system of parameters.

Remark 33.7. This correspond to a local "chart" that is finite-to-1.

Theorem 33.8 (Dimension theorem). $\operatorname{dim} M=d(M)=s(M)$.

Lemma 33.9. If $x \in \mathfrak{m}$, then $s(M) \leq s(M / x M)+1$. If x does not vanish on any irreducible component of Supp M of maximal dimension, then $\operatorname{dim} M / x M+1 \leq \operatorname{dim} M$. If x is not a zerodivisor on M, then $d(M / x M) \leq d(M)-1$.

Proof. The first two are trivial. For the last, we have $0 \rightarrow M \xrightarrow{x} M \rightarrow M / x M$, and so $d(M / x M)<$ $d(M)$.
34. $27 / 11 / 2019$

Proposition 34.1. $\operatorname{dim} M \leq d(M)$.

Proof. Base case: $d(M)=0$, in which case $\mathfrak{m}^{n} M$ stabilize. By Nakayama, we have $\mathfrak{m}^{n} M=0$. Now Supp $M=V(\operatorname{Ann} M) \subseteq V\left(\mathfrak{m}^{n}\right)=\{\mathfrak{m}\}$. Hence $\operatorname{dim} M=0$.

Let $\mathfrak{p}_{0} \subset \mathfrak{p}_{1} \subset \cdots \subset \mathfrak{p}_{r}$ be a maximal chain in $\operatorname{Supp} M$. Then $\operatorname{dim} M=\operatorname{dim} A / \mathfrak{p}_{0} \cdot \mathfrak{p}_{0}$ is a minimal prime, so \mathfrak{p}_{0} is an associated prime and let $N \subseteq M$ isomorphic to A / \mathfrak{p}_{0}. Then $d(N) \leq d(M)$, and so it suffices to prove $r \leq d(N)$. Choose $x \in \mathfrak{p}_{1} \backslash \mathfrak{p}_{0}$. Then $\mathfrak{p}_{1} \subset \cdots \subset \mathfrak{p}_{r} \subset N / x N$. So $d-1 \leq \operatorname{dim} N / x N \leq d(N / x N)$ by induction. And then by the lemma we have $d(N / x N) \leq d(N)-1$ since x is not a zerodivisor.

Proposition 34.2. $d(M) \leq s(M)$.
Proof. Let x_{1}, \ldots, x_{s} be a minimal system of parameters. Since $\left(x_{1}, \ldots, x_{s}\right) \subseteq \mathfrak{m}$, we have $d(M) \leq$ $d\left(\left(x_{1}, \ldots, x_{s}\right)^{\bullet} M\right)$. By Samuel's theorem, this is at most s.

Proposition 34.3. $s(M) \leq \operatorname{dim} M$.
Proof. Base case $\operatorname{dim} M=0$: then $\operatorname{Supp} M=\{\mathfrak{m}\}$, so M has finite length.
Consider $\{\mathfrak{p} \in \operatorname{Supp} M: \operatorname{dim} A / \mathfrak{p}=\operatorname{dim} M\}$ which are contained in the minimal primes of Supp M, which is a finite set. \mathfrak{m} is not in such set if $\operatorname{dim} M>0$. Choose $x \in \mathfrak{m}$ outside such set. By the lemma, we have $\operatorname{dim} M / x M \leq \operatorname{dim} M-1$. Also by the lemma, $s(M) \leq s(M / x M)$, and we are done.

Corollary 34.4. Let (A, \mathfrak{m}) be a Noetherian local ring with residue field k. Then $\operatorname{dim} \mathfrak{m} / \mathfrak{m}^{2} \geq$ $\operatorname{dim} A$.

Proof. By Nakayama we have that $\operatorname{dim} \mathfrak{m} / \mathfrak{m}^{2}$ is the minimal number of generators of \mathfrak{m}, which serves as a system of parameters, hence is at least $s(A)$.

34.1. Height.

Definition 34.5. Let \mathfrak{p} be a prime of a ring A. Then its height $h(\mathfrak{p})$ is $\operatorname{dim} A_{\mathfrak{p}}$.

Theorem 34.6. Let A be a Noetherian ring and $f_{1}, \ldots, f_{r} \in A$. Let \mathfrak{p} be a prime minimal among primes that contain $\left(f_{1}, \ldots, f_{r}\right)$. Then $h(\mathfrak{p}) \leq r$.

Proof. By the assumptions, the only prime ideal in $A_{\mathfrak{p}} /\left(f_{1}, \ldots, f_{r}\right)$ is \mathfrak{p}. Hence $r \geq s\left(A_{\mathfrak{p}}\right)=$ $h(\mathfrak{p})$.
35. 02/12/2019

Krull's principal ideal theorem, regularity, inverse limits
36. $04 / 12 / 2019$

Theorem 36.1. Given a short exact sequence $0 \rightarrow A_{\bullet} \rightarrow B_{\bullet} \rightarrow C \bullet 0$, then the inverse limit is left exact, and is right exact if A_{\bullet} has only surjective maps.

Proof. Think of the inverse limit as the kernel of $\Theta_{A}: \prod A_{n} \rightarrow \prod A_{n}$ given by $\left(x_{i}\right) \mapsto\left(x_{i}-\right.$ $\left.\operatorname{im}\left(x_{i+1}\right)\right)$, and apply Snake lemma.

Definition 36.2. For a ring A with an ideal I, define the completion $\hat{A}:={\underset{ڭ}{n}}_{\lim _{n}} A / I^{n}$. For a module $M, \hat{M}:=\underset{{\underset{n}{n}}^{\lim _{\star}} M / I^{n} .}{\text {. }}$

Proposition 36.3. For a topological abelian group, $M \rightarrow \hat{M}$ is injective if and only if M is separated (i.e. Hausdorff).
37. $06 / 12 / 2019$

Theorem 37.1. Let A be a local ring. Then \hat{A} is flat A-module, we have $A / \mathfrak{m}^{n} \simeq \hat{A} / \mathfrak{m}^{n}$. \hat{A} is complete, and $\mathfrak{m} \subseteq \hat{A}$.

Theorem 38.1. If A is a Noetherian local ring, then so is \hat{A}. They have the same dimension, and \hat{A} is regular if and only if A is.

Proof. We clearly have that $\hat{\mathfrak{m}}$ is maximal. But it is contained in the radical, and so $\hat{\mathfrak{m}}$ is the unique maximal ideal. Since gr. $A \simeq \operatorname{gr} . \hat{A}$, the right one must be Noetherian. Now let I be an ideal of \hat{A}, with the induced filtration Fil I. Then gr. I is an ideal of a Noetherian ring, so is finitely generated. Take homogeneous generators for it, and take lifts. Then using that \hat{A} is complete and the Krull intersection theorem, we can prove they generate I.

By the above, the quotients of the filtration are isomorphic, and so the Hilbert-Samuel polynomials are the same, so $\operatorname{dim} \hat{A}=\operatorname{dim} A$.

Regularity also follows since $\mathfrak{m} / \mathfrak{m}^{2} \simeq \hat{\mathfrak{m}} / \hat{\mathfrak{m}}^{2}$.

38.1. DVRs.

Definition 38.2. A discrete valuation ring is the ring of integers of a discrete valued field.

One can check that for t a uniformizer, that $\mathfrak{m}=(t)$, and so the ideals are only $\mathfrak{m}^{e}=\left(t^{e}\right)$. Hence it is regular of dimension 1 .
39. $11 / 12 / 2019$

39.1. Depth.

Definition 39.1. For a ring A and a module M. Consider sequences $x_{1}, \ldots, x_{n} \in A$ and let $M_{i}=M /\left(x_{1}, \ldots, x_{i}\right) M . x_{i}$ is a M-regular sequence if for all $i, x_{i} \notin \operatorname{z} \cdot \operatorname{div}\left(M_{i-1}\right)$.

Remark 39.2. If M is Noetherian, this means all components of M_{i-1} (including embedded) get cut out.

Definition 39.3. For an ideal \mathfrak{a} with $\mathfrak{a} M \subset M$, let $\operatorname{depth}_{\mathfrak{a}} M$ be the supremum of M-regular sequences contained in \mathfrak{a}.

Example 39.4. Let $A=k[x, y]_{(x, y)}$ and $M=A /\left(x y, y^{2}\right)$. Then depth $M=0$ since (x, y) is an embedded component.

Let P_{1}, P_{2} be two \mathbb{A}^{2} inside A^{4} meeting transversely. Then any attempt at cutting will still have an embedded prime.

Assume for simplicity that A is local Noetherian and M is finitely generated.

Proposition 39.5. depth $M=0$ if an only if $\mathfrak{a} \in$ Ass M, and $\operatorname{depth} M \leq \operatorname{dim} M$. If equality holds, we call M Cohen-Macaulay.

Theorem 39.6. A is a $D V R$ if and only if it is (1) normal domain of dimension 1, (2) normal domain of depth 1 , (3) regular ring of dimension 1 , (4) \mathfrak{m} is pricipal and height $(\mathfrak{m}) \geq 1$.

