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1. What is Iwasawa theory?

1.1. Inspiration from function fields. Let X be a smooth projective variety over Fp. Its zeta function was

originally defined as

ζ(X, s) = exp

∑
m≥1

#X(Fpm)

m
p−ms

 .

To prove the easy parts of the Weil conjecture, one writes X(Fpm) = X(Fp)
Frobm=1, and rewrites this using

Grothendieck–Lefschetz as

#X(Fpm) =
∑
k≥0

(−1)ktr
(
Frobm,∗ | Hk

ét(XFp
,Ql)

)
and thus

ζ(X, s) = exp

∑
k≥0

(−1)ktr

∑
m≥1

1

m
Frobmp−ms | Hk

ét(XFp
,Ql)

 =
∏
k≥0

det
(
1− Frob · p−s | Hk

ét(XFp
,Ql)

)(−1)k+1

.

That is,

ζ(X, s) =
∏
k≥0

char
(
Frob · T | Hk

ét(XFp
,Ql)

)(−1)k+1

|T=p−s .

So, very roughly, we see some extra structure when we look at all the #X(Fpm) together. For example, the

#X(Fpm) must satisfy a recurrence relation!

1.2. Iwasawa’s idea. Now imagine we want to replace the variety X above by a number field F. Instead of

X(Fp), we should have some other interesting arithmetic quantity. Iwasawa’s original investigations were about

Cl(F ), so let’s take that as the analogue.

For X(Fpm), we can think of this as the rational points of XFpm
. If X corresponds to F, maybe XFpm

corresponds

to a finite extension Fn of F. But what should be this tower of number fields? The Galois group Gal(Fp/Fp) is

Ẑ =
∏

p Zp. It turns out it will be easier, instead, to focus on one of the Zp components.

Definition 1.1. A Zd
p-extension of a number field F is an infinite Galois extension F∞ with Gal(F∞/F ) ≃ Zd

p.

Concretely, this is a tower of number fields Fn where Gal(Fn/F ) ≃ (Z/pnZ)d.
1
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Remark 1.2. Leopoldt’s conjecture for a number field F and a prime p is equivalent to1: if d is the largest positive

integer such that there exist a Zd
p extension of F, then d = 1+ r2(F ), where r2(F ) is the number of complex places

of F. Leopoldt’s conjecture is known for abelian extensions of Q and abelian extensions of a quadratic imaginary

field.

Example 1.3. If F = Q, there is a unique Zp-extension, contained inside the tower of cyclotomic fields Q(µpn).

Example 1.4. If F = K is a quadratic imaginary field, There is a unique Z2
p-extension K∞. Complex conjugation

acts on Gal(K∞/K), with eigencomponents Gal(Kcycl
∞ /K) and Gal(Kanti

∞ /K). Of course, Kcycl
∞ is contained in the

tower K(µpn). Kanti
∞ is the unique Zp-extension contained in the tower of ring class fields of p-power conductor of

K.

For concreteness, let’s focus our attention on the cyclotomic Zp-extension. It is contained inside the tower

Kn := Q(µpn+1), say Fn ⊆ Kn for n ≥ 0. So F0 = Q and K0 = Q(µp).

If we want an analogue of the zeta function ζX , we need to somehow assemble the groups Cl(Kn) together. It

turns out that the groups Cl(Kn) do not behave well in families, but their p-primary parts do. So denote

Xn := Cl(Kn)[p
∞].

This is a Zp[Gal(Kn/Q)]-module.

Definition 1.5. We let X∞ := lim←−n
Xn with transition maps given by the norm map NmKn+1/Kn

: Cl(Kn+1)[p
∞]→

Cl(Kn)[p
∞]. This is a ZpJGal(K∞/Q)K-module. Call Λcycl := ZpJGal(K∞/Q)K.

Now note that

Gal(K∞/Q) = lim←−
n

Gal(Kn/Q) = lim←−
n

(Z/pn+1Z)× = Z×
p .

Assuming p > 2 for simplicity, we can choose a topological generator γ ∈ (1+pZp)
× log−−→∼ Zp (for example γ = 1+p),

we identify

Gal(K∞/Q) = ∆× Zp

where ∆ = (Z/pZ)× ω
↪−→ Z×

p for ω the Teichmüller character.

Definition 1.6. Let Λ := ZpJT K denote the Iwasawa algebra. It is a complete regular local ring of dimension 2

with maximal ideal m = (p, T ).

Proposition 1.7. Λcycl ≃ Λ[∆] where T ∈ Λ is identified with γ − 1.2

Proof. We just need to show that ZpJGal(F∞/Q)K ≃ Λ. The problem is seeing that the map and its inverse are

well-defined and continuous. That is, we need to see that

(T + 1)p
n

→ 1 in Λ

1This is explained in [Was97, Theorem 13.4]
2In general, the completed group algebra of a Zd

p extension is identified with ZpJT1, . . . , TdK in a similar way.
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and that

(γ − 1)n → 0 in ZpJGal(F∞/Q)K.

The first one simply follows from (T + 1)p
n − 1 ∈ mmin1≤a≤pn (a+νp(p

n

a )). Since νp
(
pn

a

)
= n − νp(a) for 1 ≤ a ≤ pn,

we have (T + 1)p
n − 1 ∈ mn+1.

For the second one, we need to show that for any m ≥ 0, we have (γ − 1)n mod (γpm − 1) goes to 0 in

Zp[Gal(Fm/Q)]. Write n = a0 + a1p+ · · ·+ akp
k in base p. Then

(γ − 1)n =

k∏
i=0

(γpi

− 1 + pi(· · · ))ai ≡
m−1∏
i=0

(γpi

− 1 + pi(· · · ))ai ·
k∏

i=m

(pi(· · · ))ai .

So (γ − 1)n mod (γpm − 1) is divisible by p
∑

i≥m iai , and
∑

i≥m iai →∞ as n→∞. □

Roughly speaking, the goal of Iwasawa theory in this case is to:

(1) Understand the structure of X∞ as a Λcycl = Λ[∆]-module.

(2) “Descend” this information to the finite level modules Xn.

2. The Iwasawa algebra
3 We can think of Λ = ZpJT K as the ring of functions of the closed p-adic unit disk. Such a function can only

have finitely many zeroes, that is, we have:

Theorem 2.1 (p-adic Weierstraß preparation). Any element f(T ) ∈ Λ can be uniquely written as

f(T ) = pµλ(T )u(T )

where µ ≥ 0, u(T ) ∈ Λ× and λ(T ) ∈ Zp[T ] is a distinguished polynomial, i.e. of the form

λ(T ) = Tn + an−1T
n−1 + · · ·+ a1T + a0 where p | ai.

We call µ the µ-invariant of f, and deg λ the λ-invariant of f.

In particular, Λ is a UFD. Its height 1 prime ideals are simply (p) and (f(T )) for f irreducible distinguished

polynomials. Hence all the localizations Λp at height 1 prime ideals are DVRs.4

Definition 2.2. A Λ-module M is pseudo-null5 if it is annihilated by some power of m. A pseudo-isomorphism is

a morphism M1 →M2 with pseudo-null kernel and cokernel.

Remark 2.3. If there is a pseudo-isomorphism M1 → M2, it is not true that there must be a pseudo-isomorphism

M2 → M1. But this is true if M1 and M2 are finitely generated torsion Λ-modules, where pseudo-isomorphism

gives an equivalence relation.

3[Was97, Section 13.2] or [Sha, Section 2.4] contain proofs for the statements in this section.
4More generally, ZpJT1, . . . , TnK is still a Krull domain, a certain higher dimension generalization of Dedekind domains
5A module over a Krull domain is said to be pseudo-null if its annihilator ideal has height ≥ 2.
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We note that a Λ-module M has finite cardinality if and only if it is finitely generated and pseudo-null. We have

the following analogue of the structure theorem for finitely generated modules over PIDs.6

Theorem 2.4. Let M be a finitely generated Λ-module. Then there is a pseudo-isomorphism

M → Λr ⊕
⊕
i

Λ/fei
i Λ

for some r ≥ 0 and fi are finitely many irreducible elements. r is determined by M and is additive on exact

sequences. If r = 0, then fi and ei are uniquely determined.

We define

Definition 2.5. For M a finitely generated torsion Λ-module, we define its characteristic ideal Ch(M) =
∏

p p
lengthΛp

M⊗ΛΛp

By definition, the characteristic ideal is multiplicative in exact sequences of finitely generated torsion Λ-modules.

Moreover, for M finitely generated torsion, M is pseudo-null exactly if Ch(M) = Λ. Thus

Proposition 2.6. If M →
⊕

i Λ/f
ei
i as above is a pseudo isomorphism, then Ch(M) = (

∏
i f

ei
i ) .

3. The descent procedure

Let’s now come back to the case that Xn = Cl(Kn)[p
∞] for Kn = Q(µpn+1). We formed X∞ = lim←−n

Xn under

norms. How can we hope to recover Xn? By the definition of X∞, we have a natural map

X∞ → Xn.

Proposition 3.1. The natural map X∞ → Xn is surjective.

Proof. In fact, we will prove that NmKn+1/Kn
: Xn+1 → Xn is surjective for all n ≥ 0. This will rely on the fact

that p is totally ramified in Kn+1.
7 Let Ln denote the maximal unramified abelian p-extension of Kn. Then we

have the diagram, where labels denote the behaviour of primes above p.

Ln+1

LnKn+1

Kn+1

Ln

Kn

tot.ram

unr

6This also holds over Krull domains, although it is not true that pseudo-null is the same as finite cardinality.
7This is not true for all Zp extensions. For instance, it is not true for Kanti

∞ /K for a quadratic imaginary field K.
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By ramification reasons, we must have Ln ∩Kn+1 = Kn. Thus

Xn+1 = Gal(Ln+1/Kn+1) ↠ Gal(LnKn+1/Kn+1) = Gal(Ln/Kn) = Xn

and such map is identified with NmKn+1/Kn
: Xn+1 → Xn. □

Proposition 3.2 ([Was97, Proposition 13.22]). We have Xn = X∞/νnX∞ where

νn := (1 + T )p
n

− 1 ∈ Λ.

Proof. Recall that 1 + T = γ, and thus α := 1 + νn is a topological generator of Gal(K∞/Kn).

Consider the diagram as in the previous proof

L∞

LnK∞

K∞

Ln

Kn

tot.ram

unr

Then G := Gal(L∞/Kn) = X∞⋊̂⟨α⟩ for a choice of lift of α. Ln is the maximal unramified abelian subextension

of L∞/Kn, so

Xn = Gal(Ln/Kn) = (X∞⋊̂⟨α⟩)/([G,G], α) = X∞/(g ∼ α · g : g ∈ X∞) = X∞/νnX∞,

as α−1gαg−1 ∈ [G,G] and thus we must have α · g = α−1gα ∼ g. □

Corollary 3.3. X∞ is a finite generated torsion Λ-module.

Proof. As X0/pX0 = X∞/mX∞ is finite, we conclude that X∞ is a finitely generated Λ-module by Nakayama. It

is also Λ-torsion as X0 is finite. □

Now given χ = ωi a power of the Teichmüller character, assume that we had a pseudo-isomorphism Xχ
∞ →⊕

Λ/fi. Then we can consider the diagram

Xχ
∞

⊕
Λ/fi

Xχ
∞

⊕
Λ/fi

·νn

to try to compare Xχ
n = Xχ

∞/νnX
χ
∞ and

⊕
Λ/(fi, νn). Following this, one can prove
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Lemma 3.4 ([Was97, Theorem 13.13]). If X is a finitely generated torsion Λ-module with X/νnX finite for all

n ≥ 0, then there is n0 ≥ 0 and c ∈ Z such that

#X/νnX = pnp
µ+nλ+c for all n ≥ n0,

where µ, λ are the invariants of Ch(X).

But often we can be more precise than that. The main issue for the ambiguity in the lemma above is that

X →
⊕

Λ/fi in general can have both a kernel and cokernel. But fortunately, often for the modules in Iwasawa

theory the kernel must be 0. For example:

Proposition 3.5. Xχ
∞ has no nonzero pseudo-null submodules.

Proof. If it did contain a nonzero pseudo-null submodule Y, then mkY = 0 for some k. So it suffices to prove that

if Y ⊆ Xχ
∞ is a submodule with mY = 0, then Y = 0. If c = (cn)n≥0 ∈ Y, then pc = 0, and thus cn ∈ Cl(Kn)[p]

for all n. As Tc = 0, we also have (γ − 1)c = 0 for any γ ∈ Gal(K∞/K0). So cn ∈ Cl(Kn)[p]
GK0 But then

cn = NmKn+1/Kn
cn+1 = p · cn+1 = 0 for all n ≥ 0. □

Corollary 3.6. We have #Xχ
n =

∏
i #Λ/(fi, νn). In particular, #Xχ

0 = #Zp/Ch(X
χ
∞)(0).

Proof. This follows from applying the snake lemma to

0 Xχ
∞

⊕
i Λ/fi coker 0

0 Xχ
∞

⊕
i Λ/fi coker 0

·νn ·νn ·νn

Since Xχ
n is finite, the Snake lemma implies that Λ/(fi, νn) must have finite cardinality. This means that fi and

νn are coprime, and hence that ker(Λ/fi
·νn−−→ Λ/fi) = 0. Now the claim follows from the Snake lemma by noting

that coker[νn] and coker/νn have the same cardinality as coker has finite cardinality. □

Recall that we should have

Cl(Q(µp))[p
∞]χ =


0 if χ = ω,

|L(0, χ−1)|p if χ is odd and χ ̸= ω,

|(O×
Q(µp)+

/C)χ|p if χ is even.

We proved this for χ even using Euler systems, but historically it was first deduced from Mazur–Wiles proof of:

Conjecture 3.7 (Iwasawa Main Conjecture). Let En denote the units of K+
n that are congruent to 1 modulo the

prime above p. Let Cn ⊆ En be the subset of cyclotomic units. Denote E∞, C∞ their limits under the norm map.

For χ even nontrivial, denote also L χ
KL ∈ Λ the Kubota–Leopoldt p-adic L function for χ. Then for χ ̸= ω0, ω1, we

have

Ch(Xχ
∞) =

 (L ωχ−1

KL ) if χ is odd,

Ch(E∞/C∞)χ if χ is even.



FALL 2022 LEARNING SEMINAR: IWASAWA THEORY 7

Here, for χ even nontrivial, the Kubota–Leopoldt p-adic L-function is the unique element L χ
KL ∈ Λ such that

ϵncycl(L
χ
KL) = L∗(n, χωn−1) for all n ≤ 0. For an explicit construction of element, see [Was97, Theorem 7.10]. We

will later give another way to construct this.

In fact, the Euler system argument we gave can be adapted to prove the above conjecture when χ is even: see

[Was97, Section 15] for details. We will explain how, in fact, the two parts of the main conjecture are equivalent.

This is often called the reflection theorem in this classical context. We will see next week how this is a particular

case of a more general philosophy connecting Euler systems and Iwasawa main conjectures.

To build up for the proof of the reflection theorem, we will reinterpret the modules we have been considering in

terms of Selmer groups.

4. In terms of Selmer groups

Suppose we have a p-adic representation V with a GK-stable lattice Λ. Denote W := V/Λ. From the exact

sequence 0→ Λ→ V →W → 0, we have for a place v

H1(Kv,Λ)
α−→ H1(Kv, V )

β−→ H1(Kv,W ).

A Selmer structure on H1
L(Kv, V ) can be propagated to H1(Kv,Λ) and H1(Kv,W ) simply by defining

H1
L(Kv,Λ) := α−1(H1

L(Kv, V )), H1
L(Kv,W ) := β(H1

L(Kv, V )).

We will look mostly at H1
L(K,W ). Recall from Gefei’s talk

Proposition 4.1. The Kummer map induces an isomorphism O×
K ⊗ Qp

∼−→ H1
f (K,Qp(1)). For an elliptic curve

E/K, the Kummer map E(K)⊗Qp → H1
f (K,VpE) is an isomorphism if and only if X(E/K)[p∞] is finite.

But in fact, we actually have

Proposition 4.2. The inverse limit of the finite level Kummer maps identify O×
K ⊗ Zp

∼−→ H1
f (K,Zp(1)). The

direct limit of the finite level Kummer map fits into an exact sequence

0→ O×
K ⊗Qp/Zp → H1

f (K,Qp/Zp(1))→ Cl(K)[p∞]→ 0.

Similarly, if E is an elliptic curve over K, then the natural map E(K)⊗ Zp ↪→ H1
f (K,TpE) is an isomorphism iff

X(E/K)[p∞] is finite, and we also have that H1
f (K,E[p∞]) = Selp∞(E/K) fits into the exact sequence

0→ E(K)⊗Qp/Zp → H1
f (K,E[p∞])→X(E/K)[p∞]→ 0.

Let’s also look at the trivial representation Qp. Since its weight is 0, the Bloch–Kato conditions are unramified

everywhere. The propagations to Zp and Qp/Zp can be checked to also be just the unramified cohomology. Thus

H1
f (K,Qp) = H1

f (K,Zp) = 0, H1
f (K,Qp/Zp) = Hom(Cl(K),Qp/Zp).
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So X∞ is identified with

Hom

(
lim−→
n

H1
f (Kn,Qp/Zp),Qp/Zp

)
,

where the transition maps are simply the restriction.

Following Greenberg, we an give a different description of this direct limit.

Proposition 4.3. Let V be a p-adic representation of GK unramified away from Σ with GK-stable lattice T. Denote

W = V/T. Let K∞/K be an abelian tower of finite extensions Kn/K unramified away from Σ. Let ΛK∞/K :=

ZpJGal(K∞/K)K, and Λ∨
K∞/K

:= Hom(ΛK∞/K ,Qp/Zp) as GK-modules, and Λcycl-action by (λ · f)(x) = f(xλ).

Let TT := T ⊗Zp
ΛK∞/K and WT := T ⊗Zp

Λ∨
K∞/K . Then

lim←−
n

H1(KΣ/Kn, T ) = H1(KΣ/K,TT ) and lim−→
n

H1(KΣ/Kn,W ) = H1(KΣ/K,WT ).

Proof. We only prove the second equality, since the first is analogous.

By Shapiro’s lemma, we have H1(KΣ/Kn,W ) = H1(KΣ/K, IndGK

GKn
W ). So It suffices to see that lim−→n

IndGK

GKn
W =

W as GK-modules. We have

IndGK

GKn
W = {f : GK →W : f(σx) = f(x)σ for x ∈ GK , σ ∈ GKn

}

and so

lim−→
n

IndGK

GKn
W = Hom(ΛK∞/K ,W )

which is WT as W = T ⊗Zp
Qp/Zp. □

One can define Selmer structures on these cohomology groups by the inverse/direct limit of the Bloch–Kato local

conditions.8 Then we indeed have H1
f (K,TT ) = lim←−H1

f (Kn, T ) and H1
f (K,WT ) = lim−→H1

f (Kn,W ).

Definition 4.4. We denote Sel(T ) = H1
f (Q,TT ), S(T ) = H1

f (Q,WT ) and X(T ) = Hom(S(T ),Qp/Zp) when the

extension K∞/K is implied.

Example 4.5. For T = Zp and T = Zp(1), we have

Sel(Zp) = 0, Sel(Zp(1)) = lim←−
n

(O×
Kn
⊗ Zp), X(Zp) = lim←−

n

Cl(Kn)[p
∞],

and X(Zp(1)) fits in the exact sequence

0→

(
lim−→
n

Cl(Kn)[p
∞]

)∨

→ X(Zp(1))→

(
lim−→
n

(O×
Kn
⊗ Zp)

)∨

→ 0

5. Reflection theorem

Let’s return to the case Kn = Q(µpn).

8To be precise, one needs to consider the inverse/direct limit of the semi-local cohomology groups: for a place v of K, consider
H1

f (Kn,v , ?) :=
⊕

w|v in Kn
H1

f (Kn,w, ?).
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5.1. Local conditions. We think of Λcycl as a p-adic interpolation of the Tate twists Zp(k). Indeed, we have

GQ-equivariant specializations spk : Λ
cycl → Zp(k) given by g 7→ ϵkcycl(g). So we note the following quite confusing

fact:

Proposition 5.1. H1
f,{p}(Q,TZp(1)) = H1

f,{p}(Q,TZp
) ⊗ ϵ−1

cycl as Λcycl-modules. Similarly, H1
f,{p}(Q,WZp(1)) =

H1
f,{p}(Q,WZp

)⊗ ϵcycl as Λcycl-modules.

Proof. We have TZp(1) = Zp(1)⊗Zp Λcycl = Zp ⊗Zp Λcycl(1). But note that we have a GQ-equivariant isomorphism

of Λcycl-modules Λcycl(1)
∼−→ Λcycl(ϵ−1

cycl) where ϵcycl denotes a twist only on the Λcycl-action, not on the GQ action.

This is simply given by g 7→ ϵ−1
cycl(g)g. Hence TZp(1)

∼−→ TZp
⊗ ϵ−1

cycl. Similarly, WZp(1)
∼−→ WZp

⊗ ϵcycl. Finally, one

can check that the local conditions outside p agree, since they are in fact trivial for both WZp and WZp(1), as we

explain in what follows.

In fact, if l ̸= p, then H1
f (Ql,WT ) = 0 for any T. If pe is the largest power of p that divides l − 1, then l

splits completely over Ke/Q, and each prime λ above l is totally inert in K∞/Ke. Fix such λ, and let λn be

the unique prime above it in Kn. We are looking at lim−→n
H1(k(λn),W

Iλn ). Now for any cn ∈ H1(k(λn),W
Iλn ),

choose a large enough so that cn(Frobλn
) is fixed by GKn+a

. Then cn(Frobλn+a
) = NmKn+a/Kn

cn(Frobλn
) by

the cocycle condition. Choose b such that pbcn(Frobλn) = 0. Then the above says that the restriction of cn to

H1(k(λn+a+b),W
Iλn+a+b ) is zero. □

Now let’s discuss the local conditions above p.

Proposition 5.2. H1
f (Qp,TZp) = 0 and H1

f (Qp,WZp(1)) = H1(Qp,WZp(1)).

Proof. We have

H1
f (Kn,p,Zp) = H1

unr(Kn,p,Zp) = H1(F(p−1)pn ,Zp) = Hom(GF(p−1)pn
,Zp)

but then the transition maps are identified with the restrictions GF(p−1)pn
→ GF(p−1)pn+1 . And then we conclude

H1
f (Qp,TZp

) = Hom(GF(p−1)p∞ ,Zp) = 0.

The second claim follows from local duality. □

For Zp(1), the local condition at p is more subtle: we have 0 → µp−1 → O×
Qp(µpn ) → H1

f (Qp(µpn),Zp(1)) → 0,

and so we are looking at lim←−Nm
(O×

Qp(µpn )). This module can be very concretely described, as done by Coleman:

Theorem 5.3 ([Sha, Theorem 5.4.31]). Fix a choice of norm-compatible roots of unity ζpn . Then there exist an

exact sequence of Λcycl-modules

0→ µp−1 × Zp(1)
(ξ,a)7→(ξζa

pn )n−−−−−−−−−→ lim←−
Nm

(O×
Qp(µpn ))

Col−−→ Λcycl ϵcycl−−−→ Zp(1)→ 0.

The map Col is explicit, and we have explicit norm compatible cyclotomic units C∞ ⊆ lim←−Nm
(O×

Qp(µpn )). One

can compute their image on the Coleman map:
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Theorem 5.4 (Explicit reciprocity law, [Sha, Theorem 6.13]). If χ : ∆ → Z×
p is even and nontrivial, then the

image of Col(Cχ
∞) ∈ Λcycl,χ = Λ is generated by a function f(T ) with f((1 + p)k − 1) = L∗(1 − k, χω−k) for all

k > 0. In particular, we must have ϵkcycl(f) = ϵ1−k
cycl (L

χ
KL) for all k ∈ Z.

This result is a very explicit computation. It is also constructing the Kubota–Leopoldt p-adic L-function!

Moreover, it gives an interpretation of ϵkcycl(L
χ
KL) for k ∈ Z outside the range of interpolation. For instance, it

recovers the following formula.

Corollary 5.5 (Leopoldt). For χ : ∆→ Z×
p a nontrivial even character,

ϵcycl(L
χ
KL) =

∑p−1
a=1 χ

−1(a) logp(1− ζap )∑p−1
a=1 χ

−1(a)ζap
.

5.2. Reflection theorem. By the analysis of the local conditions above, we have

0→ Sel(Zp)⊗ ϵ−1
cycl → Sel(Zp(1))

locp−−→ H1
f (Qp,TZp(1))

and

0→ S(Zp)⊗ ϵcycl → S(Zp(1))
locp−−→ H1

/f (Qp,WZp
)⊗ ϵcycl.

We can piece these together by global duality. Since Sel(Zp) = 0, we get

0→ Sel(Zp(1))
locp−−→ H1

f (Qp,TZp(1))
loc∨p−−−→ X(Zp(1))⊗ ϵcycl → X(Zp)→ 0.

Dividing by the cyclotomic units, we get

0→ Sel(Zp(1))

C∞

locp−−→
H1

f (Qp,TZp(1))

locp(C∞)

loc∨p−−−→ X(Zp(1))⊗ ϵcycl → X(Zp)→ 0.

Since Cχ
∞ is only nonzero if χ : ∆→ Z×

p is even and nontrivial, let’s take such χ and consider

0→ Sel(Zp(1))
χ

Cχ
∞

locp−−→
H1

f (Qp,TZp(1))
χ

locp(C
χ
∞)

loc∨p−−−→ X(Zp(1))
χω−1

⊗ ϵcycl → X(Zp)
χ → 0.

Now the explicit reciprocity law says that the second Λ-module is torsion. We already known the last one is also

torsion. So all four modules are torsion, and we can compare their characteristic ideals.

From the description of X(Zp(1)), note that since χω−1 is odd and not ω−1, we have

Hom

(
lim−→
n

Cl(Kn)[p
∞]ωχ−1

,Qp/Zp

)
∼−→ X(Zp(1))

χω−1

An exercise in algebra let us conclude from this that Ch (X(Zp(1))
χ) = ι(Ch(Xχ−1

∞ )), where ι : Λ → Λ is the

involution given by inversion ι(g) = g−1. More generally, the following is true.

Proposition 5.6 ([Was97, Proposition 15.32]). If X is a finitely generated torsion Λ-module with X/νnX finite,

then Ch
(
Hom(lim−→X/νnX,Qp/Zp)

)
= ι(Ch(X)).
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The explicit reciprocity law says that

Ch

(
H1

f (Qp,TZp(1))
χ

locp(C
χ
∞)

)
= (Tw ◦ ι)(L χ

KL)

where Tw: Λ→ Λ is g 7→ ϵcycl(g)g. So the above exact sequence tells us that

Ch(E∞/C∞)χ

Ch(Xχ
∞)

= (Tw ◦ ι)

(
(L χ

KL)

Ch(Xωχ−1

∞ )

)
.

That is, this proves:

Theorem 5.7 (Reflection Theorem). For χ ̸= ω0, ω1, the Iwasawa main conjecture for χ and ωχ−1 are equivalent.
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November 28: Iwasawa theory of elliptic curves

Warning: These notes are meant to give a big picture overview of the subject. I will not try to spell out all

the technical assumptions for the “big” theorems in this exposition, and many claims will only be approximately

correct. For precise result, one should follow the references given.

6. General philosophy

Let T ⊆ V be a lattice inside a geometric p-adic representation, and denote W = V/T. We consider the Bloch–

Kato Selmer groups H1
f (F, ?) for ? ∈ {T, V,W}. The group H1

f (F,W ) contains interesting information besides just

the dimension dimH1
f (F, V ). Namely, we define

Xf (W/F ) := H1
f (F,W )/div

where the subscript means the quotient by the maximal divisible submodule (which is the image of H1
f (F, V )).

Example 6.1. If T = Zp(1), then Xf (W/F ) = Cl(F )[p∞]. If T = Zp, then Xf (W/F ) = Hom(Cl(F ),Qp/Zp). If

T = TpE, then Xf (WpE/F ) = X(E/F )[p∞]/div, which is, of course, X(E/F )[p∞] if this is finite.

Paraphrasing Kato, there are three phases of understanding of special values of L-functions. Here we think of

V to be the p-adic realization of some motive.

(0) The Bloch–Kato conjecture predicts the order of vanishing ords=0L(s, V ) to be dimH1
f (F, V

∗(1))−dimH0(F, V ∗(1)).

So let’s assume this is 0.

(1) L(0, V ) is often algebraic except for certain periods. In some cases, Deligne and Beillison conjecture certain

periods ΩV,r, such that L(0, V ) ∈ ΩV,r ·Q
×
. We will denote L(0, V )/ΩV,r by L(0, V )alg.

(2) As we vary V in some suitable p-adic family, the values L(0, V )alg often vary p-adically as well.

(3) The value L(0, V )alg often have deep arithmetic significance.

Example 6.2. Last week we saw this for the family Qp(k) ⊗ ωkχ for χ : Gal(Q(µp)/Q) → Z×
p as we vary k ≤ 0.

We have L(0,Qp(k) ⊗ ωkχ) = L(k, ωkχ), which is nonzero only if χ is odd. Then these values are exactly what

are interpolated by L χω−1

KL . As we discussed, this p-adic L-function is deeply related to the p-primary part of class

groups of p-power cyclotomic fields.

This is still quite vague, so let’s start to get more concrete. Let K∞/K be a Zd
p-extension and denote Γ :=

Gal(K∞/K). Let Λ = ZpJΓK be the Iwasawa algebra. It is isomorphic to ZpJT1, . . . , TdK.

For a suitable subset Ξ ⊆ Homcont(Γ,Qp
×
) of characters, we will consider the p-adic representations V (χ) as

χ ∈ Ξ. Here V (χ) means twisting V by GK ↠ Γ
χ−→ Q×

p (after extending scalars to contain the image of χ).

From the specialization morphisms χ : Λ → Qp
×
, we have maps H1(K,TT ) → H1(K,T (χ)), and we can define

a Selmer group SelΞ(T ) to be the set of classes that specialize to H1
f (K,T (χ)) for all χ ∈ Ξ. Similarly we can
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define SΞ(T ) ⊆ H1(K,WT ) and XΞ(T ) = SΞ(T )
∨. Of course, this will only actually capture the Selmer groups

H1
f (K,V (χ)) if Ξ is chosen suitably.

Assume that almost all of L(s, V ∗(1)(χ−1)) have the same order of vanishing r at s = 0. Then we expect SelΞ(T )

and XΞ(T ) to have Λ-rank r. Furthermore, if r = 0, then we can hope that L(s, V ∗(1)(χ−1))alg vary p-adically.

That is, that there exist an element LV,Ξ ∈ Λ such that

χ(LV,Ξ) = (∗) · L(0, V ∗(1)(χ−1))alg

up to some simple factors (∗). Finally, as we expect that L(0, V ∗(1)(χ−1))alg is related to Xf (W (χ)/F ), one can

have the hopeful expectation that

Ch(XΞ(T )) = (LV,Ξ).

There an ambiguity in this expectation, as the right hand side does not depend on the lattice T. However, different

choices of T should only change the left side by a power of p, and we can hope that the choice of T determines a

precise choice of period for LV,Ξ.

6.1. Greenberg Selmer groups. This is an exposition of the conjectures in [Gre89]. We consider the following

condition for a p-adic place v of K.

Definition 6.3. A p-adic representation V of Kv is ordinary if there exists a Qp[GKv
]-stable Z-filtration F iV ⊆ V

that is exhaustive and separated such that the action of inertia in F iV/F i+1V is by ϵicycl. Denote V + := F 1V.

In particular, ordinary representations are de Rham with Hodge–Tate weight −i of multiplicity dimF iV/F i+1V.

Proposition 6.4. If V is an ordinary Kv-representation, then

H1
g (Kv, V ) = ker(H1(Kv, V )→ H1(Iv, V/V

+)).

Proof. First note that H1
g (Kv, V/V

+) = H1
unr(Kv, V/V

+) by dimension counting, as (V/V +)GKv and Dϕ=1
crys(V/V

+)

are 0 because V/V + has only strictly positive Hodge–Tate weights. The second assertion follows since Fil1Bϕ=1
crys = 0.

Now in Hao’s talk we saw that H1(Kv, V ⊗B+
dR)→ H1(Kv, V ⊗BdR) is injective for V de Rham, and we also

saw that H1(Kv, V
+ ⊗B+

dR) = 0 as V + has strictly positive Hodge–Tate weights. Now the claim follows from the

commutative diagram

H1(Kv, V ) H1(Kv, V/V
+)

0 = H1(Kv, V
+ ⊗B+

dR) H1(Kv, V ⊗B+
dR) H1(Kv, (V/V

+)⊗B+
dR)

α

as then

H1
g (Kv, V ) = α−1H1

g (Kv, V/V
+) = α−1H1

unr(Kv, V/V
+) = ker

(
H1(Kv, V )

α−→ H1(Kv, V/V
+)→ H1(Iv, V/V

+)
)
.

□
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Remark 6.5. For many cases of interest, we have that H1
f (Kv, V ) = H1

g (Kv, V ). By dimension counting, this

happens precisely if Dϕ=1
crys(V

∗(1)) = 0. For example, this is true if V is pure of weight w ̸= −2.

For a lattice T ⊆ V, we have the induced filtrations F iT ⊆ V iT, and F iW = F iT ⊗Qp/Zp.

Proposition 6.6. Assume that (F 0V/F 1V )GKv = 0. Then H1
g (Kv,W ) = im(H1(Kv,W

+)div → H1(Kv,W )). We

also have H1
g (Kv, T ) = ker(H1(Kv, T )→ H1(Kv, T/T

+)/tor).

Proof. The assumption guarantees that H1(Kv, V/V
+) ↪→ H1(Iv, V/V

+). Thus H1
g (Kv, V ) = im(H1(Kv, V

+) →

H1(Kv, V )).

For the first claim, consider the commutative diagram

H1(Kv, V
+) H1(Kv, V )

H1(Kv,W
+) H1(Kv,W )

So H1
g (Kv,W ) is the image of the above composition. Since the image of the left map is H1(Kv,W

+)div, the claim

follows.

For the second claim, consider the commutative diagram

H1(Kv, T ) H1(Kv, V )

H1(Kv, T/T
+) H1(Kv, V/V

+)

So H1
g (Kv,W ) is the kernel of the above composition. Since the bottom map has kernel H1(Kv, T/T

+)tor, the

claim follows. □

Take K = Q and Q∞ the cyclotomic Zp-extension of Q.

Then for a GQ-stable lattice T ⊆ V, we have the induced filtration F iT, and Greenberg defines the following

Selmer group.9

Definition 6.7. SGr(Q∞,W ) ⊆ H1(QΣ/Q,WT ) defined by the local conditions: unramified at v ∤ p, and

H1
Gr(Qp,WT ) := ker

(
H1(Qp,WT )→ H1(Ip,WT/F+T )

)
.

This Selmer group correspond to the subset ΞGr ⊆ Homcont(Γ,Z×
p ) of finite order characters. If we look at

L(s, V (χ)) for χ ∈ ΞGr, then their Archimedean factors are all the same10, and they have a pole at 0 of order

rV :=
∑

0≤k<w/2

mk(V ) + (a+(V )−mw/2(V )),

where we let a+(V ) = mw/2(V ) = 0 if w is odd. So we expect that L(s, V (χ)) have a zero of order exactly rV at 0

for all but finitely many χ. So Greenberg conjectures

9This is non-standard notation.
10As twisting by finite order characters does not change the Hodge–Tate weights
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Conjecture 6.8. For T ⊆ V an ordinary p-adic representation, XGr(Q∞, T ) is a finitely generated Λ-module of

rank rV ∗(1).

The case that rV = rV ∗(1) = 0 is exactly the critical case considered by Deligne, where the special values are

supposed to be algebraic up to a precise period. In the critical case and if V is ordinary, Coates and Perrin-Riou

conjecture a precise p-adic interpolation property of L(0, V (χ)). So there is an explicit conjectured p-adic L-function

LV ∈ Frac(Λ).

Then Greenberg also conjectures

Conjecture 6.9. For T ⊆ V an ordinary p-adic representation with rV = rV ∗(1) = 0, the characteristic ideal

Ch(XGr(Q∞, T ∗(1))) is the numerator of LV as ideals in Λ⊗Zp
Qp.

Here the ambiguity of powers of p come from an ambiguity in the definition of LV and also on the choice of

lattice T. There should also be a natural way to “normalize” L with respect to T to get the equality in Λ.

Example 6.10. Take T = Zp(k). Then for Σ = {p,∞},

SGr(Q∞,Zp(k)) =

 H1(QΣ/Q,WZp(k)) if k ≥ 1,

H1
unr(Q,WZp(k)) if k ≤ 0.

So if X∞ = lim←−n
Cl(Q(µpn)[p∞] denotes the Λ[∆]-module of last time, we have XGr(Q∞,Zp(k)) = Xωk

∞ ⊗ ϵkcycl if

k ≤ 0, and

0→ Hom

(
(lim−→

n

Cl(Q(µpn)[p∞])ω
1−k

, Qp/Zp

)
⊗ϵk−1

cycl → XGr(Q∞,Zp(k))→ Hom

(
(lim−→

n

(O×,p
Q(µpn ))

ω1−k

, Qp/Zp

)
⊗ϵk−1

cycl → 0

if k ≥ 1. So indeed, we can see that XGr(Q∞,Zp(k)) has rank 1 iff k ≥ 1 is odd, corresponding to the trivial

zero at 1 − k for even nontrivial Dirichlet characters. The critical cases are if k ≥ 1 is even or k ≤ 0 is odd. So

the above conjecture recovers the Iwasawa main conjecture. Note that for k ≤ 0 even (which is non-critical), the

characteristic ideal is not a p-adic L-function.

7. Greenberg Selmer groups of elliptic curves

Let E/Q be an elliptic curve, and p ≥ 5. We consider TpE ⊆ VpE. Recall that VpE is polarized of motivic weight

−1, and has Hodge–Tate weights 0, 1. For simplicity, we will also assume

(irred) E[p] is an irreducible GQ-module.

Let K be a quadratic imaginary field. For simplicity, we will assume that (NE , DK) = 1, and that p ∤ DK .
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We will consider the extensions
K∞

Kcyc
∞ Kanti

∞

Q∞

K

Q

ΓK

Γ+
K

Γ−
K

Γ

and choose topological generators γ, γ+, γ− of Γ,Γ+
K ,Γ−

K . So if T ? = γ? − 1 for ? ∈ {∅,+,−}, we have Λ = ZpJT K,

Λ+
K = ZpJT+K, Λ−

K = ZpJT−K and ΛK = ZpJT+, T−K the corresponding Iwasawa algebras.

For what follows, let F∞/F be one of the four extensions above.

7.1. Greenberg main conjectures. VpE is an ordinary representation at a place p exactly when one of the

following:

(1) E has good reduction at p and p ∤ ap(E). That is, E has good non-supersingular reduction.

(2) E has multiplicative reduction.

In the first case, the reduction Ẽ/Fp has TpẼ ≃ Zp, and the surjection TpE ↠ TpẼ give us the filtration. In the

second case, the surjection comes from Tate’s parametrization E(Qp) ≃ Qp
×
/qZ

val−−→ Q/eZ. There is also a lot of

work that has been done to do Iwasawa theory in the case of supersingular reduction, but we will not consider this

here for simplicity.11

In both cases, V/V + is unramified, and Frobenius act by multiplication by αp. In the first case, αp is the unit

root of x2 − apx+ p, and in the second case it is ap.

Then we can define the Greenberg local condition at p as before. As for the places not above p, we have:

Proposition 7.1. Let v ∤ p be a place of F.

(1) H1
unr(Fv,WT ) has finite exponent as an abelian group.

(2) If E has good reduction at v, then H1
unr(Fv,WT ) = 0.

(3) If v only has finitely many primes above it in F∞/F, then H1
unr(Fv,WT ) = 0 as well.

Proof. The third point has the same proof as in the last talk (where we considered the cyclotomic extension of Q).

For L/Fv a finite extension, let E be the Néron model of E over OL. Let E0 be the open subgroup scheme of E

whose generic fiber is E and special fiber is the identity component of the special fiber E0 of E . Then we have an

exact sequence

0→ E0(Lunr)→ E(Lunr)→ π0(E0)→ 0

11See Skinner’s notes [Ski18] for some references.
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and E(Lunr) = E(Lunr). But by Lang’s theorem, H1(k(L), E0(Lunr)) = 0. Also, H2(k(L), E0(Lunr)) = 0 because

Gk(L) has cohomological dimension 1. Thus H1
unr(L,W ) ≃ H1(k(L), π0(E0))[p∞], which has size H0(k(L), π0(E0))[p∞]

since π0(E0) is finite. In particular, H1
unr(L,W ) = 0 if E has good reduction over L, and in general #π0(E0) kills

H1
unr(L,W ) independently of L. Now the first two claims follow from H1

unr(Fv,WT ) = lim−→n

⊕
w|v H

1
unr(Fn,w,W ).

□

We note that the third condition can only happen if F∞/F is a Zp-extension. For Q∞/Q and Kcyc
∞ /K, this

happens for any v ∤ p. For Kanti
∞ /K, we have the following splitting behaviour for v ∤ p: i) if v is split in K, then it

is totally inert in Kanti
∞ /K, ii) if v is inert in K, then it is totally split in Kanti

∞ /K.

Given this, we may define the following Iwasawa theoretic Selmer groups:

Definition 7.2. Let S(F∞, E) ⊆ H1(FΣ/F,WT ) be the Selmer group defined by the unramified local conditions

for v ∤ p, and Greenberg at v | p. Let also S0(F∞, E) be the Selmer group defined by the trivial local conditions for

v ∤ p, and Greenberg at v | p.12

Proposition 7.3. S0(F∞, E) is identified with the direct limit lim−→F⊆F ′⊆F∞
H1

f (F
′,WpE).

Proof. We have H1
f (Fv,W ) = 0 for v ∤ p. So it suffices to see that lim−→n

⊕
w|v H

1
f (Fn,w,W ) = H1

Gr(Fv,WT ). This

follows from Shapiro’s lemma, Proposition 6.6, the fact that H1
? (L, V ) for ? ∈ {e, f, g} are the same for any p-adic

field L, as V ≃ V ∗(1) are pure of weight −1, and the fact that if v | p, lim−→n

⊕
w|v H

1(Fn,w,W
+)/div = 0.

For the last claim, note that for a p-adic field L, we have H1(L,W+)/div ↪→ H2(L, T+)tor and H2(L, T+)tor is dual

to H0(L,W/W+)/div. Thus lim−→n

⊕
w|v H

1(Fn,w,W/W+)/div injects into the dual of lim←−n

⊕
w|v((W/W+)

GFn,w

/div . But

for n sufficiently large, all primes of Fn above p are totally ramified along F∞. So we are looking at lim←−n
((W/W+)

GLn

/div

for a totally ramified Zd
p-extension L∞/L of p-adic fields. But W/W+ is unramified, and the restriction maps

(W/W+)GLn → (W/W+)GLn+1 are identities, and thus the inverse limit is 0. □

For Q∞/Q and K∞/K, one expects the L-values L(1, E, χ) = L(0, V ⊗ χ) to be nonzero most of the time for

finite order characters. Indeed, we have p-adic L-functions LQ∞,E ∈ Λ and LK∞,E ∈ ΛK . For example, for a finite

order character χ : Γ→ Qp
×

of conductor pt, we have

χ(LQ∞,E) = ep(χ)
L(1, E, χ−1)

ΩE
, ep(χ) =

 α−t
p

pt

G(χ−1) if t > 0,(
1− 1

αp

)2−νp(NE)

if t = 0.

LQ∞,E was first constructed by Amice–Vélu and Vishik, see [MTT86]. LK∞,E was constructed by Perrin–Riou

[PR88].

We have the Iwasawa main Conjectures13

Conjecture 7.4 (Cyclotomic main conjecture). X(Q∞, E) is Λ-torsion, and its characteristic ideal is (LQ∞,E).

12For comparison with [Ski18], S0(F∞, E) corresponds to S(E/F∞).
13If (irred) does not hold, then the equality of characteristic ideals must be modified by a factor of p
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Conjecture 7.5 (Two-variable main conjecture). X0(K∞, E) is ΛK-torsion, and its characteristic ideal is (LK∞,E).

Now we restrict to the case of good ordinary reduction. Note that if Q ⊆ F ⊆ Q∞, then by inflation restriction

H1(F/Q,WGF )→ H1(GQ,Σ,W )→ H1(GF,Σ,W )

and since WGF = E(F )[p∞] is finite and F/Q is cyclic, #H1(F/Q,WGF ) = #Ĥ0(F/Q,WGF ) and Ĥ0(F/Q,WGF ) =

WGQ/TrF/QW
GF = E(Q)[p∞]/TrF/QE(F )[p∞]. In particular, since we are assuming (irred), we have H1

f (Q,W ) ↪→

S(Q∞, E)[T ]. Analyzing it further, one can prove

Proposition 7.6 ([Gre99]). If X(Q∞, E) is Λ-torsion and E has good ordinary reduction at p, then there is an

exact sequence

0→ H1
f (Q,W )→ S(Q∞, E)[T ]→

∏
l∈Σ

Kl

where Kl = ker(H1
/f (Ql,W )→ H1

/Gr(Ql,WT )). We have

#Kl =

 |cl(E/Q)|−1
p if l ̸= p,

#(Zp/(1− αp))
2 if l = p.

Furthermore, if H1
f (Q,W ) is finite, then the above exact sequence is also exact on the right.

This implies that

Corollary 7.7. Assume X(Q∞, E) is Λ-torsion. Then we have

r(E/Q) = 0 and X(E/Q)[p∞] is finite ⇐⇒ T ∤ Ch(X(Q∞, E)).

Proof. The above implies that

H1
f (Q,W ) is finite ⇐⇒ X0(Q∞, E)/TX(Q∞, E) is finite.

But the right hand side is a finite quantity times Λ/(T,Ch(X(Q∞, E))). This is finite if and only if T ∤ Ch(X(Q∞, E)).

□

Together with the main conjecture, this would imply the rank 0 case of Bloch–Kato for E:

r(E/Q) = 0 and X(E/Q)[p∞] is finite ⇐⇒ L(1, E) ̸= 0.

But in the rank 0 case, we can do even better, since

Proposition 7.8 ([Gre99, Proposition 4.8]). X(Q∞, E) has no nonzero pseudo-null submodules.

So the main conjecture would imply that: if L(1, E) ̸= 0, then

#Zp/triv(LQ∞,E) = #H1
f (Q,W ) ·

∏
l∈Σ

#Kl,
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that is, that

#Zp/

(
α−2
p (αp − 1)2

L(1, E)

ΩE

)
= |X(E/Q)|−1

p ·
∏
l|NE

|cl(E/Q)|−1
p ·#Zp/(1− αp)

2,

which is simply ∣∣∣∣L(1, E)

ΩE

∣∣∣∣−1

p

=

∣∣∣∣∣∣X(E/Q) ·
∏
l|NE

cl(E/Q)

∣∣∣∣∣∣
−1

p

.

This is the p-part of the BSD formula. See [SU14, Theorem 2] for precise results on this.

7.2. Anticyclotomic extension. The situation over the anticyclotomic extension is more delicate. Write

NE = N+N− where primes in N+ are split in K and primes in N− are inert in K. We will assume that N− is

square-free. Then a local root number computation shows that for any χ : Γ−
K → Z×

p of finite order,

ϵ(E,χ) = (−1)ν(N
−)+1.

In particular, we can only expect L(E,χ, 1) to be nonzero for almost all χ when N− is a product of an odd number

of primes.

7.2.1. Case ϵ = 1. In the case ϵ = 1, we have a Jacquet–Langlands transfer of fE to a definite quaternion algebra

B of discriminant N−∞. Up to a certain normalization, this is a modular form ϕ of level N+ of B. A formula of

Gross, and generalized by Shou-Wu Zhang give us that for χ : Γ−
K → Z×

p of finite order,

L(E/K,χ−1, 1)

ΩE
=

4ηE,N+,N−

w2
K

√
−DK

|ϕ(Pχ)|2

where Pχ are certain CM cycles, and ηE,N+,N− ∈ Zp is a factor related to the normalization of the Jacquet–

Langlands transfer.

The periods ϕ(Pχ) can be p-adically interpolated14 as in [BD05, Definition 1.6] into a Lϕ ∈ Λ−
K .

Conjecture 7.9 (Anticyclotomic main conjecture for ϵ = 1). X0(Kanti
∞ , E) is Λ−

K-torsion, and its characteristic

ideal is (Lϕ)
2 in Λ−

K ⊗Zp
Qp.

Remark 7.10. The factor ηE,N+,N− is related to the product of Tamagawa factors at primes of N−, but is not

always exactly that, see for example [RT97].

7.2.2. Case ϵ = −1. In this case, we expect X(Kanti
∞ , E) to have rank 1, and we would hope to interpolate

L′(E/K,χ−1, 1). However, we do not do this directly. For this discussion, we need that N is square-free if N− ̸= 1.

A root number computation shows that if χ : Γ−
K → Qp

×
is associated to an unramified algebraic Hecke character

of infinity type (n,−n) for n ≥ 1 and n ≡ 0 mod (p − 1). Then the root number of L(E,χ−1, s) is forced to be

1. So consider ΞBDP ⊆ Homcont(Γ
−
K ,Qp

×
) the subset of such characters. Then again a Waldspurger-type formula

14This requires p to be ordinary.
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says that
L(E/K,χ−1, 1)

Ω4n
∞

= ηE,N+,N− · (∗) · (L(E/K,χ−1, 1)alg)
2

where Ω∞ is a complex period, and L(E/K,χ−1, 1)alg is the result of applying certain powers of the Mass–Shimura

operator to the Jacquet–Langlands transfer of fE , and then evaluate this at a CM divisor determined by χ. Then

one can p-adically interpolate, for χ ∈ ΞBDP , the quantity

ep(χ)
L(E/K,χ−1, 1)

Ω2n
p

where Ωp is a certain p-adic period and

ep(χ) =

 L(E/Kv, χ
−1, 1)−1 if p = vv in K where v corresponds to Q→ Qp,

1 otherwise.

This corresponds to an element LBDP ∈ (Λ−
K)ur := Zur

p JΓ−
KK. In the case p is split, this was done [BDP13] in the

case N− = 1, [HB15] for general N− (and [LZZ18] over totally real fields). In the case p is non-split, this was done

by [AI19].15

Finite order characters χ : Γ−
K → Zp

×
are now outside the interpolation range, but one can prove a p-adic

Gross–Zagier formula. In this sense, LBDP is still capturing the information of L′(E/K, 1) via Gross–Zagier, and

more generally Yuan–Zhang–Zhang [YZZ13].

Theorem 7.11 (BDP formula, [HB15, Proposition 8.13]). We have

triv(LBDP ) = ep(1) · logωE
yN

+,N−

K

where yN
+,N−

K is a certain generalized Heegner point on E(K), and logE(Kv) is the formal group logarithm. There

is a similar formula for other finite order characters.

Remark 7.12. In the case N− = 1, the above yK is the usual Heegner point in E(K), and the above logarithm can

be identified with the logarithm on the formal group associated to E.

Now assume p is split. The characters χ ∈ ΞBDP have Hodge–Tate weights < −1 at v and > 1 at v. So

H1
f (Kv, V (χ)) = 0, while H1

f (Kv, V (χ)) = H1(Kv, V (χ)). Now consider

Definition 7.13. Let S?1,?2(K
?
∞, E) for ?1, ?2 ∈ {Gr, ∅, 0} denote the Iwasawa theoretic Selmer groups where the

local condition at v is given by ?1, and at v by ?2. Here ∅ means no condition, and 0 means the strict condition.

We also consider S0
?1,?2

(K∞, E) having strict local condition for w ∤ p.

Then we expect

Conjecture 7.14 (BDP anticyclotomic main conjecture). X0
∅,0(K

anti
∞ , E) is Λ−

K-torsion, and its characteristic

ideal is given by (LBDP )
2 in (Λ−

K)ur ⊗Zp
Qp.

15[Kri21] also has a construction of a p-adic L-function in the non-split case, but it lacks an interpolation formula as above, so at the
moment we cannot compare them.
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It is also worth pointing out that there is a two-variable version of this. Such p-adic L-function LK∞,BDP ∈

(ΛK)ur interpolates special values for χ : ΓK → Qp
×

associated to unramified Hecke characters of infinity type

(n,m) where n ≥ 1,m ≤ −1, and n,m ≡ 0 mod (p− 1). We expect

Conjecture 7.15 (BDP two-variable main conjecture). X∅,0(K∞, E) is ΛK-torsion, and its characteristic ideal is

given by LK∞,BDP in (ΛK)ur ⊗Zp Qp.

Similarly as before, a control theorem assuming the BDP anticyclotomic main conjecture would give the order

of H1
∅,0(K,W ), in terms of log yK . With some work, this gives E(K)/Z · yn

+,N−

K , in terms of X(E/K)[p∞], which

by Gross–Zagier or Yuan–Zhang–Zhang gives the p part of the BSD formula in rank 1. See [JSW17] for precise

results on this.

8. Relation with Euler systems

8.1. Perrin–Riou regulator maps. From the exact sequence 0 → Qp → Bϕ=1
crys → BdR/B

+
dR → 0, we get for

a de Rham V and a padic field F that

0→ V GF → Dϕ=1
crys(V )→ DdR(V )/D+

dR(V )
expV−−−→ H1

e (F, V )→ 0.

Now assume that Dϕ=1
crys(V ) = 0. This also implies that H1

e (F, V ) = H1
f (F, V ). Then the inverse of the above map

is the Bloch–Kato logarithm

logV : H1
f (F, V )

∼−→ DdR(V )

D+
dR(V )

.

Moreover, if also Dϕ=1
crys(V

∗(1)) = 0, then by dualizing the map expV ∗(1) we obtain

exp∗V : H1
/f (F, V )

∼−→ D+
dR(V ).

If F∞/F is a Lubin–Tate extension, V is crystalline and has non-negative Hodge–Tate weights, then Perrin–Riou

and others16 proved that H1
Iw(F, T )/V

GF∞ is a torsion-free Λ-module of rank dimQp V, and constructed a regulator

map

LV : H1
Iw(F, T )→H (Γ)⊗Dcris(V )

where H (Γ) is a certain algebra of distributions, with Λ ⊆ H (Γ). This regulator map was defined to interpolate

Bloch–Kato logarithms when specializing to V (k) for k ≫ 0 as in [PR94, Théorème], but it also interpolates

Bloch–Kato dual exponentials when specializing to V (k) for k ≪ 0, as proven by Colmez.17

Often, one can choose suitable η ∈ Dcris(V
∗(1)) so that the composition of the above with α ⊗ β 7→ α · ⟨β, η⟩

lies in Λ. In the case of an ordinary elliptic curve V = VpE over Qp, V
+ and V/V + are of dimension 1, and in in

many cases we can normalize the regulator map to obtain injections with finite cokernel

Log : H1
f (Qp,TT )⊗Λ Λur ↪→ Λur, Col : H1

/f (Qp,TT ) ↪→ Λ.

16See for example [LLZ11].
17See for example [Ber03].
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In settings where we have Euler systems, they often afford global cohomology classes in Sel?(F∞,TT ), whose

localizations are related to p-adic L-functions via these regulator maps. See also [BCD+14] for a good discussion

about some cases of this. We will see some examples in what follows.

8.2. Euler systems. We will denote by Sel(F∞, E) = H1
f (F,TT ), with the modifications similarly to S(F∞, E).

In all this discussion, we assume that p splits in K and that p has ordinary good reduction.18

8.2.1. Cyclotomic main conjecture. In the case of Q∞/Q, Kato [Kat04] produced an Euler system which affords

us a free rank 1 Λ-module

ZKato ⊆ Sel∅(Q∞, E).

Moreover, a deep explicit reciprocity law proven by Kato says that

Theorem 8.1 (Reciprocity law). Under the Coleman map Col : H1
/f (Qp,TT ) ↪→ Λ, locp(ZKato) is sent to LQ∞,E ·Λ.

It is known that LQ∞,E is non-zero. This is how we know that ZKato is non zero. It also implies that Sel(Q∞, E)∩

ZKato = 0. By global duality,

0→ Sel(Q∞, E)→ Sel∅(Q∞, E)→ H1
/f (Qp, T )→ X(Q∞, E)→ X0(Q∞, E)→ 0,

and we can divide by ZKato

0→ Sel(Q∞, E)→ Sel∅(Q∞, E)

ZKato
→

H1
/f (Qp, T )

locp(ZKato)
→ X(Q∞, E)→ X0(Q∞, E)→ 0.

Using this, one can prove that the cyclotomic main conjecture is equivalent to:

Conjecture 8.2 (Cyclotomic main conjecture without L-functions). Sel∅(Q∞, E) is a rank 1 torsion-free Λ-module,

and Ch
(

Sel∅(Q∞,E)
ZKato

)
= Ch(X0(Q∞, E)).

Kato proved that X0(Q∞, E) is Λ-torsion, Sel∅(Q∞, E) is rank 1 torsion-free and the “Euler system divisibility”

Ch(X0(Q∞, E)) divides Ch

(
Sel∅(Q∞, E)

ZKato

)
using his Euler system.

Proof of equivalence. Using that Sel∅(Q∞, E) is a rank 1 torsion-free Λ-module, we have that Sel∅(Q∞,E)
ZKato

, and

hence Sel(Q∞, E), are Λ-torsion. But Sel(Q∞, E) ⊆ Sel∅(Q∞, E) and the latter is torsion-free, so this means that

Sel(Q∞, E) is zero. From the exact sequence above, we would thus conclude that X(Q∞, E) is Λ-torsion.

Hence from Kato’s result we obtain the exact sequence of torsion Λ-modules

0→ Sel∅(Q∞, E)

ZKato
→

H1
/f (Qp, T )

locp(ZKato)
→ X(Q∞, E)→ X0(Q∞, E)→ 0.

Now the equivalence of equalities of characteristic ideals follows from the reciprocity law. □

18There has been a lot of progress on extending these to non-split p or supersingular reduction.
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More precisely, the above proof shows that Kato’s divisibility translate to the divisibility

(LQ∞,E) divides Ch(X(Q∞, E)).

Remark 8.3. Skinner–Urban [SU14] adapted the techniques of Ribet and Mazur–Wiles in the context of GU(2, 2)

to prove the opposite divisibility in the two-variable main conjecture under some technical assumptions (crucially,

one of them is that ϵ = 1)

Ch(X(K∞, E)) divides (LK∞,E).

By specializing to the cyclotomic variable, this amounts to

Ch(X(Q∞, E)) · Ch(X(Q∞, EK)) divides (LQ∞,E) · (LQ∞,EK ).

So in combination with Kato’s result, this proves the full cyclotomic main conjecture in some cases.

8.2.2. Anticyclotomic main conjecture. Let’s assume that N− = 1 for simplicity. Then we have the Euler

system of Heegner points. They are (essentially) norm compatible in the anticyclotomic tower. So we get a free

rank 1 Λ-module

ZHeeg ⊆ Sel(Kanti
∞ , E).

Even before the work of BDP, Perrin–Riou made the following conjecture

Conjecture 8.4 (Perrin–Riou’s main conjecture). X(Kanti
∞ , E) is a rank 1 Λ-module. There is a pseudo-isomorphism

X(Kanti
∞ , E) ∼ Λ⊕N ⊕N with Ch(N) = Ch

(
Sel(Kanti

∞ ,E)
ZHeeg

)
.

There are analogues of this conjecture in the case N− ̸= 1 by using generalized Heegner points.

This conjecture can be show to be equivalent to the BDP main conjecture by a similar (in principle) but more

complicated analysis as above. See [Cas17, Appendix A] for details. The crucial point is that

Theorem 8.5 (Reciprocity law, [Cas17, Theorem A.1]). Under the big logarithm map Log : H1
f (Qp,TT ) ⊗Λ−

K

(Λ−
K)ur ↪→ (Λ−

K)ur, we have Log(locp(ZHeeg)) = LBDP · (Λ−
K)ur.

As before, the Euler system nature of Heegner points allows one to prove the rank part and the “Euler system

divisibility” (see [How04])

Ch(N) divides Ch

(
Sel(Kanti

∞ , E)

ZHeeg

)
.

Remark 8.6. Xin Wan [Wan20] adapted the argument of Skinner–Urban to GU(3, 1) to prove the opposite divis-

ibility in the two-variable main conjecture under some technical assumptions for the case ϵ = −1. As before, this

affords a proof of the full anticyclotomic main conjecture in some cases.

8.2.3. Two variable main conjectures. Lei–Loeffler–Zerbes [LLZ14] have constructed a free submodule

ZLLZ ⊆ SelGr,∅(K∞, E)
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with two reciprocity laws, which have (essentially) been proven in [LLZ14] and [KLZ17]: under the maps Col : H1
/f (Kv,TT )

∼−→

ΛK and Log : H1
f (Kv,TT )⊗ΛK

Λur
K

∼−→ Λur
K , we have

Col(locv(ZLLZ)) = LK∞,E · ΛK , Log(locv(ZLLZ)) = LK∞,BDP · Λur
K .

Conjecture 8.7 (Two variable main conjecture without L-functions). SelGr,∅(K∞, E) is a torsion free rank 1

ΛK-modules, ZLLZ is nonzero and Ch(XGr,0(K∞, E)) = Ch
(

SelGr,∅(K∞,E)

ZLLZ

)
.

By arguments similar as above, given the reciprocity laws, this main conjecture is related to both of the two

variable main conjectures: that Ch(X(K∞, E)) = (LK∞,E) and that Ch(X∅,0(K∞, E)) = (LK∞,BDP ).
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