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November 21: Introduction to Iwasawa theory

1. WHAT 1S IWASAWA THEORY”

1.1. Inspiration from function fields. Let X be a smooth projective variety over F,. Its zeta function was

originally defined as

(X,s)=exp Y wlj_ms

m>1

Frob™=1

To prove the easy parts of the Weil conjecture, one writes X (F,m) = X (Fp) , and rewrites this using

Grothendieck—Lefschetz as
#X (Fpn) = S (=1)*tr (Frob™* | HE (X5, Q)

k>0
and thus
k 1 m,_—ms k —s k (_1)k+1
¢(X,s) =exp Z(—l) tr Z —Frob™p | Hét(XE, Q) = H det (1 — Frob-p™° | Hét(XE, QZ)) .
k>0 me1 k>0
That is,

(—1)k
((X,s) = [] char (Frob T | B (X Ql)) F—
k>0

So, very roughly, we see some eztra structure when we look at all the #X (F,m) together. For example, the

#X (Fpm ) must satisfy a recurrence relation!

1.2. Iwasawa’s idea. Now imagine we want to replace the variety X above by a number field F. Instead of
X (F,), we should have some other interesting arithmetic quantity. Iwasawa’s original investigations were about
CI(F), so let’s take that as the analogue.

For X (FF,m ), we can think of this as the rational points of X .. If X corresponds to F, maybe X ,, corresponds
to a finite extension F), of F. But what should be this tower of number fields? The Galois group Gal(F,/F,) is

7 = Hp Zy. It turns out it will be easier, instead, to focus on one of the Z, components.

Definition 1.1. A Zg—extension of a number field F' is an infinite Galois extension F,, with Gal(Fu/F) ~ Zg.

Concretely, this is a tower of number fields F,, where Gal(F,,/F) ~ (Z/p"Z)?.
1
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Remark 1.2. Leopoldt’s conjecture for a number field F' and a prime p is equivalent to': if d is the largest positive
integer such that there exist a Z¢ extension of F, then d = 1+ ry(F'), where r2(F) is the number of complex places
of F. Leopoldt’s conjecture is known for abelian extensions of Q and abelian extensions of a quadratic imaginary

field.
Example 1.3. If F' = Q, there is a unique Z,-extension, contained inside the tower of cyclotomic fields Q(g,n).

Example 1.4. If FF = K is a quadratic imaginary field, There is a unique Zg—extension K. Complex conjugation
acts on Gal(K,/K), with eigencomponents Gal(K/'/K) and Gal(K/K). Of course, K</ is contained in the
tower K (u,n). K2 is the unique Z,-extension contained in the tower of ring class fields of p-power conductor of

K.

For concreteness, let’s focus our attention on the cyclotomic Z,-extension. It is contained inside the tower
Ky i= Q(ppnt1), say I, € K, for n > 0. So Fy = Q and Ko = Q(pp).
If we want an analogue of the zeta function (x, we need to somehow assemble the groups CI(K,,) together. It

turns out that the groups CI(K,,) do not behave well in families, but their p-primary parts do. So denote
X, = Cl(K,)[p™].

This is a Z,[Gal(K, /Q)]-module.

Definition 1.5. Welet X, := lim X, with transition maps given by the norm map Nmg, ., /k, : Cl(Kpt1)[p>] —
Cl(K,,)[p>]. This is a Z,[Gal(K/Q)]-module. Call A := 7Z,[Gal(K/Q)].

Now note that

Gal(Ko/Q) = lim Gal(K,,/Q) = lim(Z/p" ' 2)* = Z,).

Assuming p > 2 for simplicity, we can choose a topological generator v € (1+pZ,)* 107% Z,, (for example v = 1+p),
we identify
Gal(K»/Q) = A X Z,

where A = (Z/pZ)* <> Z, for w the Teichmiiller character.

Definition 1.6. Let A := Z,[T] denote the Iwasawa algebra. It is a complete regular local ring of dimension 2

with maximal ideal m = (p, T).
Proposition 1.7. A%< ~ A[A] where T € A is identified with v — 1.2
Proof. We just need to show that Z,[Gal(F./Q)] ~ A. The problem is seeing that the map and its inverse are
well-defined and continuous. That is, we need to see that
(T+1)P" = 1in A

IThis is explained in | , Theorem 13.4]
2In general, the completed group algebra of a Zg extension is identified with Zp[T1,...,T4] in a similar way.
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and that

(vy—1)" - 0in Z,[Gal(Fs /Q)].

p"

The first one simply follows from (7 + 1)Pn — 1 € m™Mini<as<pn (atvp (")) Since v, (p;) =n—vp(a) for 1 <a <p",
we have (T + 1)P" —1 € m™+1,
For the second one, we need to show that for any m > 0, we have (y — 1) mod (4*" — 1) goes to 0 in

Z,[Gal(F,,/Q)]. Write n = ag + aip + - - - + axp® in base p. Then

k ) . m—1 ; 4 k .
(=" =TI =140 = [T =149 ¢ - [T
=0 =0 i=m

So (v —1)" mod (v*" — 1) is divisible by p>~izm % and ... ia; — 00 as n — oc. O

i>m
Roughly speaking, the goal of Iwasawa theory in this case is to:

(1) Understand the structure of X, as a A%<l = A[A]-module.

(2) “Descend” this information to the finite level modules X,,.

2. THE IWASAWA ALGEBRA

3 We can think of A = Z,[T] as the ring of functions of the closed p-adic unit disk. Such a function can only

have finitely many zeroes, that is, we have:
Theorem 2.1 (p-adic Weierstral preparation). Any element f(T) € A can be uniquely written as
F(T) = pPAT)u(T)
where ;1 >0, w(T) € A* and X(T) € Z,[T) is a distinguished polynomial, i.e. of the form
MT)=T"+an1T" '+ +a1T +ag where p|a;.
We call i the p-invariant of f, and deg A the A-invariant of f.

In particular, A is a UFD. Its height 1 prime ideals are simply (p) and (f(7")) for f irreducible distinguished

polynomials. Hence all the localizations A, at height 1 prime ideals are DVRs.*

Definition 2.2. A A-module M is pseudo-null® if it is annihilated by some power of m. A pseudo-isomorphism is

a morphism M; — Ms with pseudo-null kernel and cokernel.

Remark 2.3. If there is a pseudo-isomorphism M; — Mo, it is not true that there must be a pseudo-isomorphism
Ms — M;. But this is true if M; and My are finitely generated torsion A-modules, where pseudo-isomorphism

gives an equivalence relation.

3 , Section 13.2] or [Sha, Section 2.4] contain proofs for the statements in this section.
4More generally, Zp[T1,...,Tn] is still a Krull domain, a certain higher dimension generalization of Dedekind domains
5A module over a Krull domain is said to be pseudo-null if its annihilator ideal has height > 2.
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We note that a A-module M has finite cardinality if and only if it is finitely generated and pseudo-null. We have

the following analogue of the structure theorem for finitely generated modules over PIDs.%
Theorem 2.4. Let M be a finitely generated A-module. Then there is a pseudo-isomorphism
M= A" o E@A/fHA

for some r > 0 and f; are finitely many irreducible elements. r is determined by M and is additive on exact

sequences. If r =0, then f; and e; are uniquely determined.
We define
Definition 2.5. For M a finitely generated torsion A-module, we define its characteristic ideal Ch(M) =[], plongtha, MO Ly

By definition, the characteristic ideal is multiplicative in exact sequences of finitely generated torsion A-modules.

Moreover, for M finitely generated torsion, M is pseudo-null exactly if Ch(M) = A. Thus

Proposition 2.6. If M — @, A/ f{" as above is a pseudo isomorphism, then Ch(M) = (], f{*).

3. THE DESCENT PROCEDURE

Let’s now come back to the case that X,, = CI(K,,)[p>] for K, = Q(ppn+1). We formed X, = lim X, under

norms. How can we hope to recover X,,? By the definition of X, we have a natural map
KXo — Xp.
Proposition 3.1. The natural map X — X, is surjective.

Proof. In fact, we will prove that Nmpg, . /k,: Xnt1 — X, is surjective for all n > 0. This will rely on the fact
that p is totally ramified in K, 4;.” Let L,, denote the maximal unramified abelian p-extension of K,. Then we

have the diagram, where labels denote the behaviour of primes above p.

Ln+1
Ln Kn+1
Kn+1
Ln tot.ram
unr
K,

6This also holds over Krull domains, although it is not true that pseudo-null is the same as finite cardinality.
"This is not true for all Zp extensions. For instance, it is not true for K& /K for a quadratic imaginary field K.
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By ramification reasons, we must have L, N K,, ;1 = K,,. Thus
Xpy1 = Gal(Lpt1/Kpy1) & Gal(Ly Kpq1/Knv1) = Gal(L, /K,) = X,

and such map is identified with Nmpg, k@ Xni1 — Xo. O

Proposition 3.2 (| , Proposition 13.22]). We have X,, = Xoo/vnXoo where
Upi=(1+T)"" —1€A.

Proof. Recall that 1+ T =+, and thus o := 1+ v, is a topological generator of Gal(K,/K,,).

Consider the diagram as in the previous proof

Lo
LK
Koo
Ln tot.ram
unr
K,

Then G := Gal(Loo/K,) = Xoox(a) for a choice of lift of a. L, is the maximal unramified abelian subextension

of Loo/Kp, s0O
X, = Gal(L,/K,) = (Xoox(a))/([G,G],a) = Xoo /(g ~ - g: 9 € Xoo) = Xoo/VnXoo,

as a~tgag™! € [G,G] and thus we must have o - g = o~ lga ~ g. O
Corollary 3.3. X, is a finite generated torsion A-module.

Proof. As Xo/pXo = Xoo/mXo is finite, we conclude that X, is a finitely generated A-module by Nakayama. It

is also A-torsion as X is finite. O

Now given y = w’ a power of the Teichmiiller character, assume that we had a pseudo-isomorphism XX —

@ A/ f;. Then we can consider the diagram

XX —— @A/

[

XX —— ©DA/fi

to try to compare XX = XX /v, XX and @ A/(fi, vn). Following this, one can prove
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Lemma 3.4 (| , Theorem 13.13]). If X is a finitely generated torsion A-module with X/v,X finite for all

n > 0, then there is ng > 0 and ¢ € Z such that
#X /v, X = p"P T for all n > no,

where p, A are the invariants of Ch(X).

But often we can be more precise than that. The main issue for the ambiguity in the lemma above is that
X — @A/ f; in general can have both a kernel and cokernel. But fortunately, often for the modules in Iwasawa

theory the kernel must be 0. For example:
Proposition 3.5. XX has no nonzero pseudo-null submodules.

Proof. If it did contain a nonzero pseudo-null submodule Y, then m*Y = 0 for some k. So it suffices to prove that
if Y C XX is a submodule with mY = 0, then Y = 0. If ¢ = (¢;,)n>0 € Y, then pc = 0, and thus ¢, € CI(K,)[p]
for all n. As Tc = 0, we also have (y — 1)c = 0 for any v € Gal(K/Kp). So ¢, € CI(K,)[p| %0 But then

Cn :NmKn+1/Kncn+1 =p-cpe1 =0 for all n > 0. O
Corollary 3.6. We have #XX =], #A/(fi,vn). In particular, #XJ = #Z,/Ch(XX )(0).

Proof. This follows from applying the snake lemma to

0 XX D, A/ fi coker 0
0 XX D, A/ fi coker 0

Since XX is finite, the Snake lemma implies that A/(f;, v,) must have finite cardinality. This means that f; and
v, are coprime, and hence that ker(A/f; 2 A/f;) = 0. Now the claim follows from the Snake lemma by noting

that coker[v,] and coker/v,, have the same cardinality as coker has finite cardinality. O
Recall that we should have

0 if x =w,
CHQ(pp)) [P ]X = IL(0,x V)|, if x is odd and x # w,

|(06(up)+/C)X|P if y is even.
We proved this for x even using Euler systems, but historically it was first deduced from Mazur—Wiles proof of:

Conjecture 3.7 (Iwasawa Main Conjecture). Let E,, denote the units of K,& that are congruent to 1 modulo the
prime above p. Let Cp, C E,, be the subset of cyclotomic units. Denote Eo,,Cys their limits under the norm map.
For x even nontrivial, denote also Z5; € A the Kubota—Leopoldt p-adic L function for x. Then for x # w° w', we

have
(fﬁfil) if x is odd,

Ch(Foo/Cs)X if x is even.

Ch(XX) =
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Here, for x even nontrivial, the Kubota—Leopoldt p-adic L-function is the unique element .27, € A such that

€n (LX) = L*(n,xw" 1) for all n < 0. For an explicit construction of element, see | , Theorem 7.10]. We

n
cycl

will later give another way to construct this.

In fact, the Euler system argument we gave can be adapted to prove the above conjecture when y is even: see
[ , Section 15] for details. We will explain how, in fact, the two parts of the main conjecture are equivalent.
This is often called the reflection theorem in this classical context. We will see next week how this is a particular
case of a more general philosophy connecting Euler systems and Iwasawa main conjectures.

To build up for the proof of the reflection theorem, we will reinterpret the modules we have been considering in

terms of Selmer groups.

4. IN TERMS OF SELMER GROUPS

Suppose we have a p-adic representation V' with a G-stable lattice A. Denote W := V/A. From the exact

sequence 0 - A =V — W — 0, we have for a place v
HY (K, A) % HY(K,, V) 2 H' (K, W).
A Selmer structure on H:(K,, V) can be propagated to H'(K,,A) and H'(K,, W) simply by defining
HA(Ko A) = o (HE(K,, V), HE(K,, W) = B(HE(K,, V).
We will look mostly at Hx:(K,W). Recall from Gefei’s talk

Proposition 4.1. The Kummer map induces an isomorphism O @ Q, = H}(K, Q,(1)). For an elliptic curve

E/K, the Kummer map E(K) ® Q, — H}(K, VpE) is an isomorphism if and only if II(E/K)[p™] is finite.
But in fact, we actually have

Proposition 4.2. The inverse limit of the finite level Kummer maps identify Ox ® Z, — H(K,Zy(1)). The

direct limit of the finite level Kummer map fits into an exact sequence
0— Of ®Qp/Zy — H{(K,Qp/Zy(1)) — CUK)[p>] — 0.

Similarly, if E is an elliptic curve over K, then the natural map E(K) ® Z, — H}(K, T,E) is an isomorphism iff
UL(E/K)[p>] is finite, and we also have that H}(K, E[p>]) = Sel,~(E/K) fits into the exact sequence

0 — BE(K) ® Qy/Z, — H}{ (K, E[p™]) — HL(E/K)[p™] — 0.

Let’s also look at the trivial representation Q,,. Since its weight is 0, the Bloch-Kato conditions are unramified

everywhere. The propagations to Z, and Q,/Z, can be checked to also be just the unramified cohomology. Thus

H}(K, Qp) = H}(K, Zy) =0, H}(K, Qp/Zp) = Hom(CUK), Qp/Zy).
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So X is identified with
Hom <@ H}(Km(@p/zp)?(@p/zp) )

where the transition maps are simply the restriction.

Following Greenberg, we an give a different description of this direct limit.

Proposition 4.3. Let V be a p-adic representation of G unramified away from X with G -stable lattice T. Denote
W = V/T. Let Ko/K be an abelian tower of finite extensions K, /K unramified away from X. Let Ak /x =
Zy[Gal(K»/K)], and A¥(oo/K = Hom(Ag__/x,Qp/Zy) as Gg-modules, and A -action by (X f)(x) = f(a).
Let Tr =T ®z, Ak /i and Wy :=T ®y, AYQO/K. Then

r%nHl(KE/Kan):Hl(KZ/KaTT) and h%Hl(Kz/KmW)ZHl(KZ/K’WT)-

Proof. We only prove the second equality, since the first is analogous.
By Shapiro’s lemma, we have H!(Kx/K,,, W) = H (Kx /K, Iﬂdgin W). So It suffices to see that hﬂn Indgﬁn W=
W as Gg-modules. We have

Indginw ={f: Gx = W: f(ox) = f(x)? for z € Gk, 0 € Gk, }

and so

lim Ind &% W = Hom(Ag_xc, W)

which is Wy as W =T ®z, Q,/Z,. O

One can define Selmer structures on these cohomology groups by the inverse/direct limit of the Bloch—Kato local

conditions.® Then we indeed have H}{(K,Tr) = @H}(KH,T) and H}j (K, Wr) = h_r)nH}(Kn, w).

Definition 4.4. We denote Sel(T) = H}(Q, Tr), S(T) = H}(Q,Wr) and X(T) = Hom(S(T),Qp/Z;,) when the

extension Ko, /K is implied.
Example 4.5. For T =Z, and T = Z,(1), we have

Sel(Z,) =0, Sel(Z,(1)) = m(0 ®7,), X(Z,) = lim CL(K,)[p™).

n n

and X (Z,(1)) fits in the exact sequence

0— (1'%01(1@)[1)00]) — X(Z,(1)) = (n%((o;{n ®Zp)> =0
5. REFLECTION THEOREM

Let’s return to the case K,, = Q(ppn ).

8To be precise, one needs to consider the inverse/direct limit of the semi-local cohomology groups: for a place v of K, consider
H}(Knw,?) = @yly in 1, H} Enyw,?).
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5.1. Local conditions. We think of AU as a p-adic interpolation of the Tate twists Z, (k). Indeed, we have

k

eye(9)- So we note the following quite confusing

Gg-equivariant specializations spj,: AVl — Z,(k) given by g — €

fact:

Proposition 5.1. H}y{p}(@,Tz,}(l)) = H},{p}(Q’TZP) ® egylcl as A¥L_modules. Similarly, H},{p}(Q,WZF(l)) _
H},{p} (Q’sz) @ €Ecycl GS A _modules.

Proof. We have Ty, (1) = Zy(1) ®z, AV = Z, ®z, A®*(1). But note that we have a Gg-equivariant isomorphism

of A®¥“-modules AU (1) =5 Acvel(e !

Cycl) where €.y denotes a twist only on the Ac¥el_action, not on the Gq action.

-1
cycl

-1

This is simply given by g +— € cyel-

(9)g- Hence Tz 1) = Tz, ®¢ Similarly, Wz 1) = Wz, ® €cycr- Finally, one
can check that the local conditions outside p agree, since they are in fact trivial for both Wz, and Wz (1), as we
explain in what follows.

In fact, if | # p, then H}(QZ,WT) = 0 for any T. If p¢ is the largest power of p that divides | — 1, then [
splits completely over K./Q, and each prime A above [ is totally inert in K, /K.. Fix such A, and let A\, be
the unique prime above it in K,. We are looking at lim H(k(\,), Whn). Now for any ¢, € H*(k(\,), W),

choose a large enough so that c,(Froby,) is fixed by G, ,,. Then c,(Froby, ) = Nmg, . /k,cn(Froby,) by

n+a

the cocycle condition. Choose b such that p’c, (Froby,) = 0. Then the above says that the restriction of ¢, to
HY(k(Anyasp), Whntatv) is zero. 0

Now let’s discuss the local conditions above p.
Proposition 5.2. H}(QP,TZP) =0 and H}(Q,,,sz(l)) = H'(Qp, Wz, 1)

Proof. We have
H}(Knyp’zp) =H, (Kn,ps Zp) = Hl(F(pfl)p"vzp) = Hom(GF(p_l)mep)

unr

but then the transition maps are identified with the restrictions G, ;). — GrF__, ... And then we conclude

)P

H} (Qp, TZP) = HOIIl(GY]F(pil)pOQ 3 Zp) =0.

The second claim follows from local duality. O

For Z,(1), the local condition at p is more subtle: we have 0 — p,—; — O@p(upn) — Hp(Qp(ppn), Zp(1)) — 0,

and so we are looking at ]'&nNm(O(S (u n)). This module can be very concretely described, as done by Coleman:

Theorem 5.3 ([Sha, Theorem 5.4.31]). Fiz a choice of norm-compatible roots of unity (yn. Then there exist an

exact sequence of AV -modules

(&,a)~(§Con)n
_—

0= pp_1 x Zp(1) m(0F () 2 AV L Z,(1) = 0,
Nm

The map Col is explicit, and we have explicit norm compatible cyclotomic units Cy, C @Nm(o@zp(upn))' One

can compute their image on the Coleman map:
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Theorem 5.4 (Explicit reciprocity law, [Sha, Theorem 6.13]). If x: A — Z) is even and nontrivial, then the
image of Col(CX)) € AYbX = A is generated by a function f(T) with f((1+ p)* —1) = L*(1 — k,xw™F) for all

k > 0. In particular, we must have effycl(f) = eiy_c];(,f;&) for all k € Z.
This result is a very explicit computation. It is also constructing the Kubota—Leopoldt p-adic L-function!

k

wyel(Zgr) for k € Z outside the range of interpolation. For instance, it

Moreover, it gives an interpretation of e

recovers the following formula.

Corollary 5.5 (Leopoldt). For x: A — Z) a nontrivial even character,

S x(a) log, (1 — ¢2)
el (LX) = =4 - P P,
€eyet (L L) b (a)Ce

5.2. Reflection theorem. By the analysis of the local conditions above, we have

loc,

0 = Sel(Zp) @ €,y = Sel(Zy(1)) — H}(Qp, Tz, (1))

and

locy,

0 = S(Zp) ® €cyet = S(Zp(1)) —= H}¢(Qp, W3z,) @ €cyer-
We can piece these together by global duality. Since Sel(Z,) = 0, we get

locY

locy, p
0 — Sel(Zp(1)) —= H}(Qp, Tz, (1)) —= X (Zp(1)) ® €cyer — X (Zp) — 0.

Dividing by the cyclotomic units, we get

1 v
0 s Sel(Zp(l)) locy, Hf(@mTZp(l)) locy

Coo loc,(Co) X(Zyp(1)) ® €cyer — X(Zyp) — 0.

Since C%, is only nonzero if x: A — Z is even and nontrivial, let’s take such x and consider

Sel(Zy(1))X 1oc, H}(vaTZP(l))X locy

% loc, (CX) X(Zpy()) " @ €eyer — X(Zp)X — 0.

0—

Now the explicit reciprocity law says that the second A-module is torsion. We already known the last one is also
torsion. So all four modules are torsion, and we can compare their characteristic ideals.

1

From the description of X (Z,(1)), note that since xyw™' is odd and not w™!, we have

—1

Hom (@ 01(Kn)[p°°]“><l,@p/zp> = X(Z, (1))

An exercise in algebra let us conclude from this that Ch (X (Z,(1))X) = L(Ch(ngl)L where ¢: A — A is the

involution given by inversion ¢(g) = g~'. More generally, the following is true.

Proposition 5.6 (| , Proposition 15.32]). If X is a finitely generated torsion A-module with X/v, X finite,
then Ch (Hom(li_n;l X/vnX, @p/zp)) = 1(Ch(X)).
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The explicit reciprocity law says that

H}(Qp, Tz, (1))
oh (JM) = (Two ) (ZL5%;)

where Tw: A — A is g — ecya(g)g. So the above exact sequence tells us that

Ch(Eoo/Coc)X oy [ ZkL)
chxy) )<Ch(X;gX1)>'

That is, this proves:

1

Theorem 5.7 (Reflection Theorem). For x # w° w!, the Iwasawa main conjecture for x and wx~! are equivalent.
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November 28: Iwasawa theory of elliptic curves

Warning: These notes are meant to give a big picture overview of the subject. I will not try to spell out all
the technical assumptions for the “big” theorems in this exposition, and many claims will only be approximately

correct. For precise result, one should follow the references given.

6. GENERAL PHILOSOPHY

Let T' C V be a lattice inside a geometric p-adic representation, and denote W = V/T. We consider the Bloch—
Kato Selmer groups H} (F,?) for 7 € {T,V,W}. The group H} (F, W) contains interesting information besides just
the dimension dim H} (F,V). Namely, we define

Hlf(W/F) = H}(F7 W)/div
where the subscript means the quotient by the maximal divisible submodule (which is the image of H}(F V).

Example 6.1. If T' = Z,(1), then Il;(W/F) = CI(F)[p>°]. If T = Z,, then IIT;(W/F) = Hom(Cl(F),Q,/Z,). If
T =T,E, then lll;(W,E/F) = UI(E/F)[p™] aiv, which is, of course, III(E/F)[p>] if this is finite.

Paraphrasing Kato, there are three phases of understanding of special values of L-functions. Here we think of
V' to be the p-adic realization of some motive.
(0) The Bloch-Kato conjecture predicts the order of vanishing ord;—oL(s, V') to be dim H} (F,V*(1))—dim H°(F, V*(1)).
So let’s assume this is 0.
(1) L(0,V) is often algebraic except for certain periods. In some cases, Deligne and Beillison conjecture certain
periods vy, such that L(0,V) € Qy,, .Q”. We will denote L(0, V)/Qv, by L(0,V)aig-
(2) As we vary V in some suitable p-adic family, the values L(0, V')q14 often vary p-adically as well.

(3) The value L(0,V )44 often have deep arithmetic significance.

Example 6.2. Last week we saw this for the family Q,(k) ® w¥x for x: Gal(Q(u,)/Q) — Z) as we vary k < 0.
We have L(0,Q,(k) ® w*x) = L(k,w¥X), which is nonzero only if x is odd. Then these values are exactly what
are interpolated by ,,Sffg}jil. As we discussed, this p-adic L-function is deeply related to the p-primary part of class

groups of p-power cyclotomic fields.

This is still quite vague, so let’s start to get more concrete. Let Ko,/K be a Zg—extension and denote I' :=
Gal(K/K). Let A = Z,[I'] be the Iwasawa algebra. It is isomorphic to Z,[T1, ..., Tq4].

For a suitable subset 2 C Homopt (F,@X) of characters, we will consider the p-adic representations V(x) as
X € E. Here V(x) means twisting V by Gx — T X, @; (after extending scalars to contain the image of x).
From the specialization morphisms y: A — @X, we have maps H'(K,T7r) — HY(K,T(x)), and we can define

a Selmer group Sel=(T") to be the set of classes that specialize to H}(K, T(x)) for all x € E. Similarly we can
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define S=(T) € HY(K,Wr) and X=(T) = S=(T)Y. Of course, this will only actually capture the Selmer groups
H (K, V(x)) if Z is chosen suitably.

Assume that almost all of L(s, V*(1)(x!)) have the same order of vanishing r at s = 0. Then we expect Selz(7T')
and X=(T) to have A-rank r. Furthermore, if r = 0, then we can hope that L(s, V*(1)(x™!))ay vary p-adically.

That is, that there exist an element £y = € A such that

X(Lvz) = (4) - L0,V (1) (X™))ag

up to some simple factors (*). Finally, as we expect that L(0, V*(1)(x™"))ay is related to II¢(W (x)/F), one can

have the hopeful expectation that

There an ambiguity in this expectation, as the right hand side does not depend on the lattice T. However, different
choices of T' should only change the left side by a power of p, and we can hope that the choice of T determines a

precise choice of period for %y =.

6.1. Greenberg Selmer groups. This is an exposition of the conjectures in | |. We consider the following

condition for a p-adic place v of K.

Definition 6.3. A p-adic representation V of K, is ordinary if there exists a Q,[Gk, ]-stable Z-filtration F*V C V/

that is exhaustive and separated such that the action of inertia in F*V/F**'V is by €., ;. Denote V* := F'V.

In particular, ordinary representations are de Rham with Hodge-Tate weight —i of multiplicity dim F*V/Fi+1V.
Proposition 6.4. If V is an ordinary K,-representation, then
1 _ 1 1 +
Hy(K,,V)=ker(H (K,,V) — H (L, V/VT)).

Proof. First note that H (K,,V/V™') = H_,,.(K,,V/V™") by dimension counting, as (V/V*+)“%v and DEZL(V/VT)

unT Ccrys

are 0 because V/V* has only strictly positive Hodge-Tate weights. The second assertion follows since Fille@i =0.
Now in Hao’s talk we saw that H'(K,,V ® Bip) = H'(K,,V ® Bqagr) is injective for V de Rham, and we also
saw that H'(K,,V*t ® Bj,) = 0 as V' has strictly positive Hodge-Tate weights. Now the claim follows from the

commutative diagram

HY(K,,V) ——*—— HY(K,,V/VT)

l |

0=HY(K,,V*® B},) — H'(K,,V ® Bl,) — HYK,, (V/V*)® B},)

as then

H)(K,,V)=a '"H}(K,,V/VT)=a 'H}, (K, V/V') =ker (Hl(KU, V) S HYK,,V/VT) = HI,, V/V+)) :
O
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Remark 6.5. For many cases of interest, we have that H}(K,,V) = H(K,,V). By dimension counting, this
happens precisely if foyﬁ(v*(l)) = 0. For example, this is true if V' is pure of weight w # —2.

For a lattice T C V, we have the induced filtrations F*T C V*T, and F'W = F'T ® Qp/Zy.
Proposition 6.6. Assume that (FOV/F'V)%% = 0. Then H}(K,, W) = im(H" (K,, W), = H'(K,,W)). We
also have H)(K,,T) = ker(H'(K,,T) = H' (K, T/T") jtor)-
Proof. The assumption guarantees that H'(K,,V/V*t) < H'(I,,V/V*). Thus H}(K,,V) = im(H'(K,, V') —
HY(K,,V)).

For the first claim, consider the commutative diagram

Hl(Kva V+) E— Hl(Kva V)

l l

Hl(KTH W+) E— Hl(KTHW)

So H,(K,, W) is the image of the above composition. Since the image of the left map is H'(K,, W)aiy, the claim
follows.

For the second claim, consider the commutative diagram

HY(K,,T) —— HYK,,V)

| |

HY(K,,T/Tt) — HY(K,,V/V*)

So H}(K,,W) is the kernel of the above composition. Since the bottom map has kernel H'(K,,T/T™ )ior, the

claim follows. 0

Take K = Q and Q4 the cyclotomic Z,-extension of Q.
Then for a Gg-stable lattice T C V, we have the induced filtration F'T, and Greenberg defines the following

Selmer group.’

Definition 6.7. S, (Qs, W) C H'(Qx/Q,Wr) defined by the local conditions: unramified at v { p, and
Hér(Q;DvWT) = ker (Hl(Qlﬁ WT) - Hl(lpa WT/F+T)> :

This Selmer group correspond to the subset Zq, C Homcom(I‘,Zg) of finite order characters. If we look at
L(s,V(x)) for x € =, then their Archimedean factors are all the same'®, and they have a pole at 0 of order
rvi= Y mp(V) 4 (@™ (V) = mya(V)),
0<k<w/2
where we let a® (V) = my,/2(V) = 0 if w is odd. So we expect that L(s,V(x)) have a zero of order exactly 7y at 0
for all but finitely many x. So Greenberg conjectures

9This is non-standard notation.
10As twisting by finite order characters does not change the Hodge—Tate weights
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Conjecture 6.8. For T CV an ordinary p-adic representation, Xar(Qoo,T) is a finitely generated A-module of

rank Ty« (1)-

The case that rv = ry-(;) = 0 is exactly the critical case considered by Deligne, where the special values are
supposed to be algebraic up to a precise period. In the critical case and if V' is ordinary, Coates and Perrin-Riou
conjecture a precise p-adic interpolation property of L(0, V' (x)). So there is an explicit conjectured p-adic L-function
Zy € Frac(A).

Then Greenberg also conjectures

Conjecture 6.9. For T C V an ordinary p-adic representation with ry = ry-(1y = 0, the characteristic ideal

Ch(Xar(Qoo, T*(1))) is the numerator of Ly as ideals in A ®z, Q.

Here the ambiguity of powers of p come from an ambiguity in the definition of % and also on the choice of

lattice T'. There should also be a natural way to “normalize” % with respect to T to get the equality in A.

Example 6.10. Take T = Z,(k). Then for ¥ = {p, oo},

H'(Qs/Q, Wy ) ifk>1,

Sar(Qoo, Zp(k)) =
H.,.(QWgz 1)) ifk<o0.

So if Xoo = lim Cl(Q(ppn )[p™°] denotes the A[A]-module of last time, we have Xq, (Qoo, Zp(k)) = X;’: ® e’(fycl if
k <0, and

0 — Hom ((lgﬂ Q) ™)), @p/zp> D51 5 XGr(Qoo, Zy (k) — Hom <<m<0655pn)>“1"9 @p/zp) Dekt =0

if & > 1. So indeed, we can see that X, (Qc,Zp(k)) has rank 1 iff £ > 1 is odd, corresponding to the trivial
zero at 1 — k for even nontrivial Dirichlet characters. The critical cases are if £ > 1 is even or k < 0 is odd. So
the above conjecture recovers the Iwasawa main conjecture. Note that for & < 0 even (which is non-critical), the

characteristic ideal is not a p-adic L-function.

7. GREENBERG SELMER GROUPS OF ELLIPTIC CURVES

Let E/Q be an elliptic curve, and p > 5. We consider T,E C V,E. Recall that V,,E is polarized of motivic weight

—1, and has Hodge—Tate weights 0, 1. For simplicity, we will also assume
(irred) Elp] is an irreducible Gg-module.

Let K be a quadratic imaginary field. For simplicity, we will assume that (Ng, Di) = 1, and that p{ Dg.
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We will consider the extensions

Koo
\
|

and choose topological generators v,y*,v~ of I, T, I'x. So if T? =~7 — 1 for ? € {0, +, —}, we have A = Z,[T],
AL =Z,[TH], A = Z,[T] and Ag = Z,[T+,T] the corresponding Iwasawa algebras.

For what follows, let Fi.,/F be one of the four extensions above.

7.1. Greenberg main conjectures. V,E is an ordinary representation at a place p exactly when one of the

following:

(1) E has good reduction at p and p 1t a,(E). That is, E has good non-supersingular reduction.

(2) E has multiplicative reduction.

In the first case, the reduction E/]Fp has TpE ~ 7Z,, and the surjection T,F — TpE give us the filtration. In the
second case, the surjection comes from Tate’s parametrization E(Q,) ~ @px /4" ALIN Q/eZ. There is also a lot of
work that has been done to do Iwasawa theory in the case of supersingular reduction, but we will not consider this
here for simplicity.'!

In both cases, V/V* is unramified, and Frobenius act by multiplication by a,,. In the first case, a,, is the unit
root of 2% — apx + p, and in the second case it is a,.

Then we can define the Greenberg local condition at p as before. As for the places not above p, we have:

Proposition 7.1. Let vt p be a place of F.

(1) H}, (F,,Wr) has finite exponent as an abelian group.

(2) If E has good reduction at v, then H}, (F,,Wz) = 0.

3) If v only has finitely many primes above it in Fo /F, then H. (F,,Wr) =0 as well.
unr

Proof. The third point has the same proof as in the last talk (where we considered the cyclotomic extension of Q).
For L/F, a finite extension, let £ be the Néron model of E over Or,. Let £° be the open subgroup scheme of £
whose generic fiber is E' and special fiber is the identity component of the special fiber & of £. Then we have an

exact sequence

0 — EO(LY™) — E(L"") — 7o(&) — 0

HSee Skinner’s notes [ | for some references.
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and £(L*"") = E(L*""). But by Lang’s theorem, H'(k(L),E°(L*"")) = 0. Also, H?(k(L),E°(L“"")) = 0 because
Gy (1) has cohomological dimension 1. Thus Hy,,,.(L, W) ~ H*'(k(L), mo(&y))[p*], which has size H° (k(L), (o)) [p™]
since (&) is finite. In particular, H. (L,W) = 0 if E has good reduction over L, and in general #m (&) kills

unm”r
Hl

un”r

(L, W) independently of L. Now the first two claims follow from H} (F,, Wr) = lim Do HL (Fp.,W).
]

We note that the third condition can only happen if Fi/F is a Z,-extension. For Q. /Q and K°/K, this
happens for any v { p. For K" /K| we have the following splitting behaviour for v { p: i) if v is split in K, then it
is totally inert in K /K ii) if v is inert in K, then it is totally split in K2 /K.

Given this, we may define the following Iwasawa theoretic Selmer groups:

Definition 7.2. Let S(F.,E) C HY(Fs/F,Wr) be the Selmer group defined by the unramified local conditions
for v { p, and Greenberg at v | p. Let also S°(F.., E) be the Selmer group defined by the trivial local conditions for

v {p, and Greenberg at v | p.'?
o 0 . . . . . . . . 1
Proposition 7.3. S°(F, E) is identified with the direct limit hgngF/gFm Hf(F/7 W,E).

Proof. We have H}(F,, W) = 0 for v { p. So it suffices to see that lim Do Hi (Fow, W) = HE,(F,, Wr). This

wlv
follows from Shapiro’s lemma, Proposition 6.6, the fact that H} (L, V) for ? € {e, f, g} are the same for any p-adic
field L, as V ~ V*(1) are pure of weight —1, and the fact that if v | p, lim Do HY(Fp 0, W) aiv = 0.

For the last claim, note that for a p-adic field L, we have H* (L, W) /qi, < H?*(L, T )or and H?(L, T )¢ is dual

(W/WH) e But

to HO(L, W/W™) 43, Thus lim P HY(F, 0, W/WT) 4 injects into the dual of im & Jdiv

wlv wlv

for n sufficiently large, all primes of F}, above p are totally ramified along Fi,. So we are looking at lgln((W/ W*)iﬁg
for a totally ramified Zg—extension Lo /L of p-adic fields. But W/WT is unramified, and the restriction maps

(W/WH)Gen — (W/WH)%nt1 are identities, and thus the inverse limit is 0. O

For Qu/Q and K /K, one expects the L-values L(1,E,x) = L(0,V ® x) to be nonzero most of the time for
finite order characters. Indeed, we have p-adic L-functions %5 g € A and Lk __ g € Ak. For example, for a finite

order character x: I' — @X of conductor p, we have

L(l,E,X_l) Oé;t(;pi_l 1ft>0,
X( Lo p) = p(0) =5 ex) = B
Qg ( - %) if t = 0.
P
Z0...5 was first constructed by Amice-Vélu and Vishik, see [ |. LK., r was constructed by Perrin—Riou

[P1ss].

We have the Iwasawa main Conjectures'

Conjecture 7.4 (Cyclotomic main conjecture). X(Q, E) is A-torsion, and its characteristic ideal is (Lo, E)-

2For comparison with | ], S°(Fs, E) corresponds to S(E/Fx).
131f (irred) does not hold, then the equality of characteristic ideals must be modified by a factor of p
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Conjecture 7.5 (Two-variable main conjecture). X°(Kn., E) is A -torsion, and its characteristic ideal is (Lk . £)-

Now we restrict to the case of good ordinary reduction. Note that if Q C F C Q, then by inflation restriction
HY(F/Q W) — H (Ggx, W) = H (Grx, W)

and since WG = E(F)[p®™] is finite and F/Q s cyclic, #H' (F/Q, WCr) = #H°(F/Q, WEr) and H°(F/Q, WCr) =
WS/ Trp oW = E(Q)[p™]/Tr g oE(F)[p*]. In particular, since we are assuming (irred), we have H{(Q,W) —

S(Quo, E)[T]. Analyzing it further, one can prove

Proposition 7.6 (| D. If X(Qoo, E) is A-torsion and E has good ordinary reduction at p, then there is an
exact sequence

0= H{(Q,W) = S(Qu, B)T] = [[ Ki
lex

where K; = ker(H/lf(Ql7 W) — H}Gr((@l,WT)). We have

la(B/Q);T ifl#p,
#(Lp/(1 = ap))? ifl=p.

#K; =

Furthermore, if H} (Q, W) is finite, then the above exact sequence is also exact on the right.
This implies that

Corollary 7.7. Assume X(Qu, E) is A-torsion. Then we have
r(E/Q) =0 and TI(E/Q)[p™] is finite <= T {Ch(X(Qu, E)).
Proof. The above implies that
H;(Q,W) is finite <= X°(Quc, E)/TX(Quo, E) is finite.

But the right hand side is a finite quantity times A/(T, Ch(X (Quo, E))). This is finite if and only if T { Ch(X (Qu, E)).
|

Together with the main conjecture, this would imply the rank 0 case of Bloch—Kato for E:
r(F/Q) =0 and III(E/Q)[p™] is finite <= L(1,E) # 0.
But in the rank 0 case, we can do even better, since
Proposition 7.8 (| , Proposition 4.8]). X (Qw, E) has no nonzero pseudo-null submodules.

So the main conjecture would imply that: if L(1, E) # 0, then

#Ly triv( Lo, p) = #HH(QW) - [[ #K,

lex
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that is, that

_ L(1,E _ _
#2,/ (0% - 1P 25 ) = (/) - [T laB/Q*  #2,/(1 - o)
Qp IINg
which is simply
-1
L(1,E)|™
5P - me)- [T e/
B p IINg
P
This is the p-part of the BSD formula. See | , Theorem 2] for precise results on this.

7.2. Anticyclotomic extension. The situation over the anticyclotomic extension is more delicate. Write
Ng = NTN~ where primes in NT are split in K and primes in N~ are inert in K. We will assume that N~ is

square-free. Then a local root number computation shows that for any x: 'y — Z of finite order,
e(E,x) = (~1)"™ L

In particular, we can only expect L(E, x, 1) to be nonzero for almost all x when N~ is a product of an odd number

of primes.

7.2.1. Case ¢ = 1. In the case e = 1, we have a Jacquet—Langlands transfer of fr to a definite quaternion algebra
B of discriminant N~oco. Up to a certain normalization, this is a modular form ¢ of level N of B. A formula of

Gross, and generalized by Shou-Wu Zhang give us that for x: I'yy — Z of finite order,

L(E/K,x ',1) _ dnp N+ N-
Qp wi /=D

where P, are certain CM cycles, and ng y+ ny- € Z, is a factor related to the normalization of the Jacquet—

(P

Langlands transfer.

The periods ¢(P,) can be p-adically interpolated'* as in | , Definition 1.6] into a %, € A

Conjecture 7.9 (Anticyclotomic main conjecture for € = 1). X(K%"" FE) is Ay -torsion, and its characteristic

ideal is (Zy)? in A @z, Q.

Remark 7.10. The factor ng n+ y- is related to the product of Tamagawa factors at primes of N~, but is not

always exactly that, see for example [ ]

7.2.2. Case ¢ = —1. In this case, we expect X (K%' E) to have rank 1, and we would hope to interpolate
L'(E/K,x~',1). However, we do not do this directly. For this discussion, we need that N is square-free if N~ # 1.

A root number computation shows that if x: I'; — @px is associated to an unramified algebraic Hecke character
of infinity type (n,—n) for n > 1 and n = 0 mod (p — 1). Then the root number of L(E,x!,s) is forced to be

1. So consider Zgpp C Homcont(F;{,QTpx) the subset of such characters. Then again a Waldspurger-type formula

14This requires p to be ordinary.
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says that
L(E/K,x" ' 1)

Q4n = ng,N+,N- - (%) (L(E/K,x ", 1)alg)2

where Q. is a complex period, and L(E/K,x ™!, 1)u, is the result of applying certain powers of the Mass—Shimura
operator to the Jacquet-Langlands transfer of fg, and then evaluate this at a CM divisor determined by x. Then

one can p-adically interpolate, for x € Zgpp, the quantity

L(E/K,x 1,1
ep(X)%
p

where €, is a certain p-adic period and

L(E/Kz,x ',1)7! if p=1v in K where v corresponds to Q — Q,,

ep(x) =
1 otherwise.
This corresponds to an element Zgpp € (Ag)"" 1= Z,"[['x]. In the case p is split, this was done | | in the
case N~ =1, | | for general N~ (and | | over totally real fields). In the case p is non-split, this was done

by [AT19].1°
Finite order characters x: I'yy — pr are now outside the interpolation range, but one can prove a p-adic
Gross—Zagier formula. In this sense, Zgpp is still capturing the information of L'(E/K,1) via Gross—Zagier, and

more generally Yuan—Zhang—Zhang | ]
Theorem 7.11 (BDP formula, | , Proposition 8.13]). We have

. N
triv(ZLppp) = €p(1) - log,,. yz N
where y%ﬁN? is a certain generalized Heegner point on E(K), and log (k) s the formal group logarithm. There

is a similar formula for other finite order characters.

Remark 7.12. In the case N~ = 1, the above yx is the usual Heegner point in F(K), and the above logarithm can

be identified with the logarithm on the formal group associated to E.

Now assume p is split. The characters x € Egpp have Hodge-Tate weights < —1 at v and > 1 at . So
H (K, V(x)) =0, while H{(K,,V(x)) = H'(Ky,,V(x)). Now consider

Definition 7.13. Let So, »,(K’, E) for 71,72 € {Gr,0,0} denote the Iwasawa theoretic Selmer groups where the
local condition at v is given by ?;, and at T by ?5. Here () means no condition, and 0 means the strict condition.

We also consider 5917?2(Km, E) having strict local condition for w t p.
Then we expect

Conjecture 7.14 (BDP anticyclotomic main conjecture). X§ (K& E) is Ay -torsion, and its characteristic
ideal is given by (Lepp)* in (Ag)"" ®z, Qp.

15[ | also has a construction of a p-adic L-function in the non-split case, but it lacks an interpolation formula as above, so at the

moment we cannot compare them.
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It is also worth pointing out that there is a two-variable version of this. Such p-adic L-function %, gpp €
(Ak)"" interpolates special values for x: T'x — @px associated to unramified Hecke characters of infinity type

(n,m) where n > 1,m < —1, and n,m» =0 mod (p — 1). We expect

Conjecture 7.15 (BDP two-variable main conjecture). Xy (K, E) is Ag-torsion, and its characteristic ideal is

given by L ppp in (Ax)"" @z, Qp.

Similarly as before, a control theorem assuming the BDP anticyclotomic main conjecture would give the order
of HQ},O(K, W), in terms of log yx. With some work, this gives E(K)/Z - y?’N_? in terms of III(E/K)[p], which
by Gross—Zagier or Yuan—Zhang—Zhang gives the p part of the BSD formula in rank 1. See | ] for precise

results on this.

8. RELATION WITH EULER SYSTEMS

8.1. Perrin—Riou regulator maps. From the exact sequence 0 — Q, — B2>! — Byr/Bj; — 0, we get for

crys

a de Rham V and a padic field F' that

0= VG = DI=L(V) = Dar(V)/Djp(V) 2% HY(F, V) — 0.

crys

Now assume that D?=1(V) = 0. This also implies that H!(F,V) = H}(F,V). Then the inverse of the above map

crys

is the Bloch—Kato logarithm
Dar(V)

logy : H}(F, V) = =5~
! Dir(V)

Moreover, if also D$=L(V*(1)) = 0, then by dualizing the map expy (1) We obtain

crys
expy: HJ((F,V) = Dip(V).

If F,/F is a Lubin—Tate extension, V is crystalline and has non-negative Hodge-Tate weights, then Perrin—Riou
and others'® proved that H}, (F,T)/V %= is a torsion-free A-module of rank dimg, V, and constructed a regulator
map

Ly: Hi,(F,T) — A (T) ® Deris(V)

where .7 (T") is a certain algebra of distributions, with A C J#(T"). This regulator map was defined to interpolate
Bloch-Kato logarithms when specializing to V(k) for £ > 0 as in | , Théoréme|, but it also interpolates
Bloch-Kato dual exponentials when specializing to V (k) for k < 0, as proven by Colmez.'”

Often, one can choose suitable 7 € D.;s(V*(1)) so that the composition of the above with a ® 8 — a - (8,7)
lies in A. In the case of an ordinary elliptic curve V = V,E over Q,, V* and V/V ™ are of dimension 1, and in in

many cases we can normalize the regulator map to obtain injections with finite cokernel

Log: Hp(Qp, Tr) @A A" = A", Col: Hj¢(Qy, T1) < A.

163ee for example | |
17See for example | |-
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In settings where we have Euler systems, they often afford global cohomology classes in Sel:(Fu, Tr), whose
localizations are related to p-adic L-functions via these regulator maps. See also | | for a good discussion

about some cases of this. We will see some examples in what follows.

8.2. Euler systems. We will denote by Sel(Fx, E) = H(F, Tr), with the modifications similarly to S(Fu, E).

In all this discussion, we assume that p splits in K and that p has ordinary good reduction.'®

8.2.1. Cyclotomic main conjecture. In the case of Qn,/Q, Kato | | produced an Euler system which affords

us a free rank 1 A-module

ZKato g Sel@(@o@a E)

Moreover, a deep explicit reciprocity law proven by Kato says that
Theorem 8.1 (Reciprocity law). Under the Coleman map Col: H/lf((@p, Tr) = A, locy(Zkato) is sent to Ly g-A.

It is known that g _, g is non-zero. This is how we know that Zg 44, is non zero. It also implies that Sel(Qoo, E)N

Zkato = 0. By global duality,
0 = Sel(Qoo, E) — Sely(Qoo, E) = H¢(Qy, T) = X (Qoo;s E) = Xo(Qoo, E) = 0,

and we can divide by Zx a0

Selo(Qec, E) Hj(Qp, T)
ZKato locp(ZKato)

0 — Sel(Quo, E) — = X(Qoo, E) = X0(Qeo, E) — 0.

Using this, one can prove that the cyclotomic main conjecture is equivalent to:

Conjecture 8.2 (Cyclotomic main conjecture without L-functions). Sely(Qu, E) is a rank 1 torsion-free A-module,

and Ch (22220} = Ch(Xo(Que, F)),

Kato proved that X¢(Qeo, E) is A-torsion, Selp(Qoo, E) is rank 1 torsion-free and the “Euler system divisibility”

Selp(Qoo, F) )

Ch(Xo(Qso, E)) divides Ch (
ZKato

using his Euler system.

Selw (Qoo 7E)
ZKato

hence Sel(Q, F), are A-torsion. But Sel(Qs, F) C Sely(Quo, E) and the latter is torsion-free, so this means that

Proof of equivalence. Using that Sely(Qoo, F) is a rank 1 torsion-free A-module, we have that , and

Sel(Quo, E) is zero. From the exact sequence above, we would thus conclude that X (Qe, F) is A-torsion.

Hence from Kato’s result we obtain the exact sequence of torsion A-modules

_, Selp(Qu. B) Hj(Qp, T)

0
ZKato locp(ZKato)

Now the equivalence of equalities of characteristic ideals follows from the reciprocity law. O

18There has been a lot of progress on extending these to non-split p or supersingular reduction.
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More precisely, the above proof shows that Kato’s divisibility translate to the divisibility
(L., ) divides Ch(X (Q, E)).

Remark 8.3. Skinner—Urban | | adapted the techniques of Ribet and Mazur—Wiles in the context of GU(2,2)
to prove the opposite divisibility in the two-variable main conjecture under some technical assumptions (crucially,

one of them is that e = 1)

Ch(X (Koo, F)) divides (Lx_ .E)-

By specializing to the cyclotomic variable, this amounts to
Ch(X(Qw, E)) - Ch(X (Qu, EX)) divides (Lo ) - (Lo px).
So in combination with Kato’s result, this proves the full cyclotomic main conjecture in some cases.

8.2.2. Anticyclotomic main conjecture. Let’s assume that N~ = 1 for simplicity. Then we have the Euler
system of Heegner points. They are (essentially) norm compatible in the anticyclotomic tower. So we get a free
rank 1 A-module
ZHeeg C Sel(KM E).
Even before the work of BDP, Perrin—Riou made the following conjecture
Conjecture 8.4 (Perrin—Riou’s main conjecture). X (K" E) is a rank 1 A-module. There is a pseudo-isomorphism
X (K ) ~ A& N & N with Ch(N) = Ch (M> .

ZHeeg

There are analogues of this conjecture in the case N~ # 1 by using generalized Heegner points.
This conjecture can be show to be equivalent to the BDP main conjecture by a similar (in principle) but more

complicated analysis as above. See | , Appendix A] for details. The crucial point is that

Theorem 8.5 (Reciprocity law, | , Theorem A.1]). Under the big logarithm map Log: H(Qy, Tr) ®p-
(AR)" = (AR)"", we have Log(locy(Zpeeq)) = ZLapP - (AR)™.

As before, the Euler system nature of Heegner points allows one to prove the rank part and the “Euler system

divisibility” (see | D .
Ch(N) divides Ch (W) .
Heeg
Remark 8.6. Xin Wan | | adapted the argument of Skinner—Urban to GU(3,1) to prove the opposite divis-
ibility in the two-variable main conjecture under some technical assumptions for the case e = —1. As before, this

affords a proof of the full anticyclotomic main conjecture in some cases.

8.2.3. Two variable main conjectures. Lei-Loefller—Zerbes | | have constructed a free submodule

Zrrz C Selgy p(Ks, E)
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with two reciprocity laws, which have (essentially) been proven in | ] and | |: under the maps Col: H/1 (K5, Tr) =
Ak and Log: H}(K,, Tr) ®p, AY = A¥, we have

COI(IOC@(ZLLz)) = XKOO,E . AK7 LOg(lOCU(ZLLz)) = fKOO,BDP . A%

Conjecture 8.7 (Two variable main conjecture without L-functions). Selg, ¢(Ko,E) is a torsion free rank 1

Ag-modules, Z11.z is nonzero and Ch(Xay,0(Keo, F)) = Ch (M) .

ZLLz

By arguments similar as above, given the reciprocity laws, this main conjecture is related to both of the two

variable main conjectures: that Ch(X (K, E)) = (ZLk..,r) and that Ch(Xp (K, E)) = (ZLk...BDP)-
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