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Elliptic curves

For a number field K (e.g. K = Q), an elliptic curve is a diophantine

equation of the form

E : y2 = x3 + ax + b, a, b ∈ K .

Theorem (Mordell–Weil’28)

E (K ) is a finitely generated abelian

group. (So E (K ) ' Zr ⊕ E (K )tor)

We call r the algebraic rank

ralg(E/K ).
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Elliptic curves

The main problem about elliptic curves is to understand ralg(E/K ).

The Birch and Swinnerton-Dyer conjecture relates it with the

L-function L(E/K , s), an analogue of ζ(s) for E/K .

In the case K = Q, it is

L(E/Q, s) =
∏
p

′ 1

1− app−s + p1−2s

where ap = p + 1−#E (Fp). It converges absolutely for Re(s) > 3/2.
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Birch and Swinnerton-Dyer conjecture

Conjecture (BS-D/K )

1 L(E/K , s) extends holomorphically to C.

2 ralg(E/K ) = ords=1L(E/K , s).

3
L(r)(E/K ,1)

r ! =
ΩE/K ·RE/K ·#X(E/K)·

∏
l|N cl (E/K)

(#E(K)tor)2 .

For K = Q, the following is known:

1 Follows from Modularity (Taylor–Wiles’94,

Breuil–Conrad–Diamond–Taylor’99).

2 Known if ran(E/Q) ≤ 1 by Gross–Zagier’86 + Kolyvagin’89.

3 There is progress if ran(E/Q) ≤ 1.
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Heegner points

Let E/Q and let K = Q[
√
−D] with D > 4 satisfying

NE is a product of primes split in K . (Heeg)

By modularity, we have a nontrivial map

X0(NE )→ E .

The condition (Heeg) guarantees the existence of ”special” (CM)

points in X0(NE ), and one can map them to a collection of points

zn ∈ E (K [n])

defined over rings class fields of K .
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Heegner points

For certain primes p, Kolyvagin used such points to produce a

collection

κ = {κn ∈ H1 (K ,TpE/In)}

that controls the Selmer group Selp∞(E/K ), which lies in an exact

sequence

0→ E (K )⊗Qp/Zp → Selp∞(E/K )→X(E/K )[p∞]→ 0.

Theorem (Kolyvagin)

If κ 6= 0, then κ ”controls” Selp∞(E/K ).
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Heegner points

Together with

Theorem (Gross–Zagier)

If ran(E/Q) ≤ 1, one can choose K such that κ1 6= 0.

Kolyvagin could prove

Theorem

ran(E/Q) ≤ 1 =⇒ ran(E/Q) = ralg(E/Q).
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Heegner points

Kolyvagin could only prove κ 6= 0 in the previous cases, but he

conjectured:

Conjecture (Kolyvagin)

κ is always nontrivial.

He also proved

Theorem (Kolyvagin)

If ran(E/K ) = 1, then assuming the BS-D formula, we have

κ 6≡ 0 mod p ⇐⇒ p -
∏
l |N

cl(E/K ).
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Howard’s Main Conjecture

Let E ,K , p be as before.

The anticyclotomic extension is the unique sequence of number fields

K = K0 ⊂ K1 ⊂ · · ·

Galois over Q such that [Ki+1 : Ki ] = p and such that Gal(Kn/Q) is

dihedral.

Murilo Corato Zanarella (MIT) On HMC and the Heegner point system January 17, 2020 9 / 15



Howard’s Main Conjecture

Howard’s Main Conjecture deals with the behaviour of E (Kn) when n

varies:

HMC ”=” limiting behaviour of BS-D/Kn as n→∞.

It is known in certain cases by Howard’04 + Wan’14.

It is an essential ingredient in the progress made on the BS-D formula

for ran(E/Q) = 1.
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Main Result

Theorem (Z.’19)

Let E ,K as before. Assume p is a good ordinary prime for E , that p splits

in K and that p - #E (Fp). Assume also GQ → Aut(E [p]) is surjective.

Then

κ 6≡ 0 mod p ⇐⇒ HMC and p -
∏
l |N

cl(E/K ).
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Main Result

Theorem (Z.’19)

(...). Then

κ 6≡ 0 mod p ⇐⇒ HMC and p -
∏
l |N

cl(E/K ).

1 Extends Kolyvagin’s conjectural description of when κ 6≡ 0 mod p to

higher rank.

2 Proves new cases of HMC due to

Theorem (Wei Zhang’14)

(...) =⇒ κ 6≡ 0 mod p.
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Ideas of proof

Step 1: prove κ 6≡ 0 mod p =⇒ HMC .

This is done by improving the methods of Kolyvagin and Howard to

obtain the second implication below

κ 6≡ 0 mod p =⇒ κHg is Λ-primitive =⇒ HMC .
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Ideas of proof

Step 2: prove κ 6≡ 0 mod p
HMC⇐⇒ p -

∏
l |N cl(E/K ).

The main idea is to study twists of E by anticyclotomic characters

χ : Gal(Kn/K )→ C×.

Such characters are trivial modulo p, so it suffices to prove

κχ 6≡ 0 mod p ⇐⇒ p -
∏
l |N

cl(E
χ/K )

for one such character.

Choosing χ with ran(Eχ/K ) = 1, one can adapt the methods of

Kolyagin to deduce this from HMC.
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Thank you!
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