On Howard's Main Conjecture and the Heegner point Kolyvagin system

Murilo Corato Zanarella

Massachusetts Institute of Technology

January 17, 2020

Elliptic curves

For a number field K (e.g. $K = \mathbb{Q}$), an elliptic curve is a diophantine equation of the form

$$E: y^2 = x^3 + ax + b, \quad a, b \in K.$$

э

Elliptic curves

For a number field K (e.g. $K = \mathbb{Q}$), an elliptic curve is a diophantine equation of the form

$$E: y^2 = x^3 + ax + b, \quad a, b \in K.$$

Theorem (Mordell–Weil'28) E(K) is a finitely generated abelian group. (So $E(K) \simeq \mathbb{Z}^r \oplus E(K)_{tor}$) We call r the algebraic rank $r_{alg}(E/K)$.

January 17, 2020 2 / 15

 Γ_3

P+O

The main problem about elliptic curves is to understand $r_{alg}(E/K)$.

4 A N

The main problem about elliptic curves is to understand $r_{alg}(E/K)$. The Birch and Swinnerton-Dyer conjecture relates it with the *L*-function L(E/K, s), an analogue of $\zeta(s)$ for E/K. The main problem about elliptic curves is to understand $r_{alg}(E/K)$. The Birch and Swinnerton-Dyer conjecture relates it with the *L*-function L(E/K, s), an analogue of $\zeta(s)$ for E/K.

In the case $K = \mathbb{Q}$, it is

$$L(E/\mathbb{Q},s)=\prod_{p}'\frac{1}{1-a_{p}p^{-s}+p^{1-2s}}$$

where $a_p = p + 1 - \# E(\mathbb{F}_p)$. It converges absolutely for $\operatorname{Re}(s) > 3/2$.

Conjecture (BS-D/K)

• L(E/K, s) extends holomorphically to \mathbb{C} .

Conjecture (BS-D/K)

• L(E/K, s) extends holomorphically to \mathbb{C} .

$$\mathbf{P}_{alg}(E/K) = \operatorname{ord}_{s=1} L(E/K, s).$$

$$\frac{L^{(r)}(E/K, 1)}{r!} = \frac{\Omega_{E/K} \cdot R_{E/K} \cdot \# \operatorname{III}(E/K) \cdot \prod_{l|N} c_l(E/K)}{(\# E(K)_{\operatorname{tor}})^2}$$

For $K = \mathbb{Q}$, the following is known:

Conjecture (BS-D/K)

• L(E/K, s) extends holomorphically to \mathbb{C} .

For $K = \mathbb{Q}$, the following is known:

Follows from Modularity (Taylor-Wiles'94,

Breuil-Conrad-Diamond-Taylor'99).

Conjecture (BS-D/K)

• L(E/K, s) extends holomorphically to \mathbb{C} .

2
$$r_{alg}(E/K) = \operatorname{ord}_{s=1} L(E/K, s).$$

3 $\frac{L^{(r)}(E/K, 1)}{r!} = \frac{\Omega_{E/K} \cdot R_{E/K} \cdot \# \operatorname{III}(E/K) \cdot \prod_{l|N} c_l(E/K)}{(\# E(K)_{\operatorname{tor}})^2}$

For $K = \mathbb{Q}$, the following is known:

Follows from Modularity (Taylor-Wiles'94,

Breuil-Conrad-Diamond-Taylor'99).

2 Known if $r_{an}(E/\mathbb{Q}) \leq 1$ by Gross-Zagier'86 + Kolyvagin'89.

Conjecture (BS-D/K)

• L(E/K, s) extends holomorphically to \mathbb{C} .

2
$$r_{alg}(E/K) = \operatorname{ord}_{s=1} L(E/K, s).$$

3 $\frac{L^{(r)}(E/K, 1)}{r!} = \frac{\Omega_{E/K} \cdot R_{E/K} \cdot \# \operatorname{III}(E/K) \cdot \prod_{l|N} c_l(E/K)}{(\# E(K)_{\operatorname{tor}})^2}$

For $K = \mathbb{Q}$, the following is known:

Follows from Modularity (Taylor-Wiles'94,

Breuil-Conrad-Diamond-Taylor'99).

2 Known if $r_{an}(E/\mathbb{Q}) \leq 1$ by Gross-Zagier'86 + Kolyvagin'89.

So There is progress if
$$r_{an}(E/\mathbb{Q}) \leq 1$$
.

Murilo Corato Zanarella (MIT)

Let E/\mathbb{Q} and let $K = \mathbb{Q}[\sqrt{-D}]$ with D > 4 satisfying

 N_E is a product of primes split in K.

< □ > < □ > < □ > < □ >

э

(Heeg)

Let E/\mathbb{Q} and let $K = \mathbb{Q}[\sqrt{-D}]$ with D > 4 satisfying

 N_E is a product of primes split in K. (Heeg)

By modularity, we have a nontrivial map

 $X_0(N_E) \rightarrow E.$

The condition (Heeg) guarantees the existence of "special" (CM) points in $X_0(N_E)$, and one can map them to a collection of points

 $z_n \in E(K[n])$

defined over rings class fields of K.

Murilo Corato Zanarella (MIT)

For certain primes p, Kolyvagin used such points to produce a collection

$$\kappa = \{\kappa_n \in \mathrm{H}^1(K, T_p E/I_n)\}$$

that controls the Selmer group $\operatorname{Sel}_{p^{\infty}}(E/K)$, which lies in an exact

sequence

$$0 \to E(K) \otimes \mathbb{Q}_p / \mathbb{Z}_p \to \operatorname{Sel}_{p^{\infty}}(E/K) \to \operatorname{III}(E/K)[p^{\infty}] \to 0.$$

Together with

Theorem (Gross–Zagier)

If $r_{an}(E/\mathbb{Q}) \leq 1$, one can choose K such that $\kappa_1 \neq 0$.

Kolyvagin could prove

Theorem

$$r_{an}(E/\mathbb{Q}) \leq 1 \implies r_{an}(E/\mathbb{Q}) = r_{alg}(E/\mathbb{Q}).$$

э

< (日) × < 三 × <

Kolyvagin could only prove $\kappa \neq \mathbf{0}$ in the previous cases, but he

conjectured:

Conjecture (Kolyvagin)

 κ is always nontrivial.

He also proved

Theorem (Kolyvagin)

If $r_{an}(E/K) = 1$, then assuming the BS-D formula, we have

$$\kappa \not\equiv 0 \mod p \iff p \nmid \prod_{I|N} c_I(E/K).$$

Murilo Corato Zanarella (MIT)

Let E, K, p be as before.

The anticyclotomic extension is the unique sequence of number fields

$$K = K_0 \subset K_1 \subset \cdots$$

Galois over \mathbb{Q} such that $[K_{i+1}: K_i] = p$ and such that $Gal(K_n/\mathbb{Q})$ is dihedral.

Howard's Main Conjecture deals with the behaviour of $E(K_n)$ when n

varies:

Howard's Main Conjecture deals with the behaviour of $E(K_n)$ when n varies:

HMC "=" limiting behaviour of BS-D/ K_n as $n \to \infty$.

Howard's Main Conjecture deals with the behaviour of $E(K_n)$ when *n* varies:

HMC "=" limiting behaviour of BS-D/ K_n as $n \to \infty$.

It is known in certain cases by Howard'04 + Wan'14.

Howard's Main Conjecture deals with the behaviour of $E(K_n)$ when n varies:

HMC "=" limiting behaviour of BS-D/ K_n as $n \to \infty$.

It is known in certain cases by Howard'04 + Wan'14.

It is an essential ingredient in the progress made on the BS-D formula for $r_{an}(E/\mathbb{Q}) = 1$.

Theorem (Z.'19)

Let E, K as before. Assume p is a good ordinary prime for E, that p splits in K and that $p \nmid \#E(\mathbb{F}_p)$. Assume also $G_{\mathbb{Q}} \to \operatorname{Aut}(E[p])$ is surjective. Then

$$\kappa \not\equiv 0 \mod p \iff HMC \text{ and } p \nmid \prod_{l \mid N} c_l(E/K).$$

11/15

Main Result

Theorem (Z.'19)
(...). Then
$$\kappa \not\equiv 0 \mod p \iff HMC \text{ and } p \nmid \prod_{I|N} c_I(E/K).$$

• Extends Kolyvagin's conjectural description of when $\kappa \not\equiv 0 \mod p$ to higher rank.

12/15

Main Result

Theorem (Z.'19)
(...). Then
$$\kappa \not\equiv 0 \mod p \iff HMC \text{ and } p \nmid \prod_{l|N} c_l(E/K).$$

 Extends Kolyvagin's conjectural description of when κ ≠ 0 mod p to higher rank.

Theorem (Wei Zhang'14)
(...)
$$\implies \kappa \neq 0 \mod p$$
.

Step 1: prove $\kappa \not\equiv 0 \mod p \implies HMC$.

3

3 > 4 3

Step 1: prove $\kappa \not\equiv 0 \mod p \implies HMC$.

This is done by improving the methods of Kolyvagin and Howard to obtain the second implication below

$$\kappa \not\equiv 0 \mod p \implies \kappa^{\operatorname{Hg}} \text{ is } \Lambda \operatorname{-primitive} \implies HMC.$$

Step 2: prove $\kappa \neq 0 \mod p \stackrel{HMC}{\iff} p \nmid \prod_{I|N} c_I(E/K)$.

< 4[™] ▶

э

Ideas of proof

Step 2: prove $\kappa \neq 0 \mod p \stackrel{HMC}{\iff} p \nmid \prod_{l|N} c_l(E/K)$.

The main idea is to study twists of E by anticyclotomic characters $\chi: \operatorname{Gal}(K_n/K) \to \mathbb{C}^{\times}.$

Ideas of proof

Step 2: prove $\kappa \neq 0 \mod p \stackrel{HMC}{\iff} p \nmid \prod_{l|N} c_l(E/K)$.

The main idea is to study twists of E by anticyclotomic characters $\chi: \operatorname{Gal}(K_n/K) \to \mathbb{C}^{\times}.$

Such characters are trivial modulo p, so it suffices to prove

$$\kappa^{\chi} \not\equiv 0 \mod p \iff p \nmid \prod_{l \mid N} c_l(E^{\chi}/K)$$

for one such character.

Murilo Corato Zanarella (MIT)

Ideas of proof

Step 2: prove $\kappa \neq 0 \mod p \stackrel{HMC}{\iff} p \nmid \prod_{l|N} c_l(E/K)$.

The main idea is to study twists of E by anticyclotomic characters $\chi: \operatorname{Gal}(K_n/K) \to \mathbb{C}^{\times}.$

Such characters are trivial modulo p, so it suffices to prove

$$\kappa^{\chi} \not\equiv 0 \mod p \iff p \nmid \prod_{l \mid N} c_l(E^{\chi}/K)$$

for one such character.

Choosing χ with $r_{an}(E^{\chi}/K) = 1$, one can adapt the methods of

Kolyagin to deduce this from HMC.

Thank you!

2

< □ > < □ > < □ > < □ > < □ >