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1. Introduction and Preliminaries
The Atkin-Lehner Theory specify the structure of cusp forms of a given level N, separating them into oldforms–

those that essentially come from a lower level–and newforms. This is a decomposition that agrees with the action of
the Hecke operators. In level 1, we have a basis of cusp forms consisting of eigenforms, but this is not true anymore in
level N > 1. Among other results, the Atkin-Lehner Theory shows that, instead, while the newforms still have a basis
of eigenforms, the space of oldforms have a basis of eigenfunctions only for the anemic Hecke algebra T(N).

In this paper, we prove the basic results of Atkin-Lehner. We prove the Main Theorem and some of its consequences,
such as the Multiplicity One Theorem. Our goal is to prove the decomposition theorem

Sk (Γ1 (N)) =
⊕
dM |N

αM,N,d (Snew
k (Γ1 (M))) .

We give almost a complete proof, except for a full proof of 3.11, which rely on studying the L-functions of new-
forms and their functional equations. We sketch the proof here. A full proof can be found in Miyake, T., Modular
Forms, Theorem 4.6.19. We follow mostly Lang, S., Introduction to Modular Forms, but also Kani, E., Lectures on
Applications of Modular Forms to Number Theory and Diamond, F., Shurman, J., A First Course in Modular Forms
for some of the proofs, for instance, for the Main Theorem and the Multiplicity One Theorem.

We assume a basic understanding of modular forms of higher levels, and familiarity with Hecke operators and their
action on the Fourier expansions. All modular forms considered here are for Γ1(N), unless otherwise specified.

We recall some definitions and facts that are not necessarily presented in a first exposition to the subject.

Definition 1.1. For N ≥ 1, the modular set X1(N) is the set of pairs (t, L) where L ⊂ C is a lattice and t ∈ C is a

point of order N with respect to L (that is, Z · t ∩ L = NZ · t) with t seen modulo L.

Fact. Homogeneous functions F : X1(N)→ C, of degree −k are in bijection with functions f : h→ C transforming as

modular forms of weight k under Γ1(N). The bijection is given by F 7→
(
z 7→ f(z) = F

(
1
N ,Z + Zz

))
. We are going

to use the functions f and F interchangeably.

Definition 1.2. The anemic Hecke algebra T(N) is the algebra generated by (Z/NZ)× under the diamond action and

the Hecke operators T (n) for (n,N) = 1, acting on Sk (Γ1 (N)) . The Hecke algebra T drops the condition (n,N) = 1.

Fact. The Hecke algebra T(N) is commutative and contains all its adjoints under the Petersson inner product. In fact,

for prime p not dividing N, we have 〈p〉? = 〈p〉−1 and T (p)? = 〈p〉−1 T (p), and this can be extended multiplicatively.

Notation. If f is an eigenfunction for some Hecke algebra (T or T(N)), we denote its character χf by the function

from the appropriate Hecke algebra to the complex numbers such that Tf = χf (T )f for T in the appropriate Hecke

algebra. By the Dirichlet character of an arbitrary modular form f, we mean the function ε : (Z/NZ)× → C such that

〈n〉 f = ε(n)f. We extend ε : Z→ C by letting ε(n) = 0 if (n,N) > 1.
1
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2. Change of Level
We define two maps π1(d)k, π2(d)k : Mk (Γ1 (N/d)) → Mk (Γ1 (N)) for any d | N by first defining them as maps

in the modular set X1(N): for L a lattice and t a point with Z · t ∩ L 6= {0}, we define π1(d)(t, L) = (dt, L) and
π2(d)(t, L) = (t, Nd Z · t+ L).

Lemma 2.1. π1(d) and π2(d) induce maps π1(d)k, π2(d)k : Mk (Γ1 (N/d)) → Mk (Γ1 (N)) that maps cusp forms to

cusp forms. Moreover, π1(d)k is the natural injection and π2(d)kf(z) = dkf(dz).

Proof. First, note that such induced maps are well-defined, since if t has order N in L, then dt has order N
d in L and

t has order N
d in N

d Z · t+ L. Then:

π1(d)kf(z) = π1(d)F
(

1
N ,Z + Zz

)
= F

(
d
N ,Z + Zz

)
= F

(
1

N/d ,Z + Zz
)

= f(z) and

π2(d)kf(z) = π2(d)F
(

1
N ,Z + Zz

)
= F

(
1
N ,

N
d

1
NZ + (Z + Zz)

)
= F

(
1
N ,

1
dZ + Zz

)
= dkF

(
1

N/d ,Z + Zdz
)

= dkf(dz).

It follows that the images are holomorphic in h and also that they transform as modular forms, since for λ ∈ C×,

π2(d)F (λt, λL) = F

(
λt,

N

d
Z · λt+ λL

)
= F

(
λt, λ

(
N

d
Z · t+ L

))
= λ−kF

(
t,
N

d
Z · t+ L

)
= λ−kπ2(d)kF (t, L)

The corresponding Fourier expansion is π2(d)kf(q) = dkf(qd), so π2(d)k maintain cusp forms. �

Corollary 2.2. If d1d2 | N, then πi(d1d2)k = πi(d1)kπi(d2)k for i = 1, 2 and π1(d1)k commutes with π2(d2)k.

Proof. The proof is clear from the formulas for π1(d)k and π2(d)k in the previous lemma. �

Definition 2.3. For M | N and d | NM , we denote by αM,N,d : Sk (Γ1 (M))→ Sk (Γ1 (N)) the composition

αM,N,d = π1(N/dM)k ◦ π2(d)k.

Let Sold
k (Γ1 (N)) =

∑
dM |N Im (αM,N,d) . This is a vector subspace of Sk (Γ1 (N)), whose elements are called the

oldforms. Let Snew
k (Γ1 (N)) be the orthogonal complement of Sold

k (Γ1 (N)) with respect to the Petersson inner product.

Such elements are called the newforms.

Remark 2.4. By the previous corollary, we have that if M1 |M2 | N with d1M1 |M2 and d2M2 | N, then

αM1,N,d1d2 = αM2,N,d2 ◦ αM1,M2,d1 .

Lemma 2.5. If d | N, then πi(d) for i = 1, 2 commute with T(N). Hence, αM,N,d also commutes with T(N).

Proof. For the diamond operators, we check they commute in the level of the modular sets:

(t, L) (at, L)

(dt, L) (adt, L)

π1(d)

〈a〉

π1(d)

〈a〉

(t, L) (at, L)

(t, Nd Z · t+ L) (at, Nd Z · t+ L)

π2(d)

〈a〉

π2(d)

〈a〉

The rightmost arrow in the right diagram is true because we have that N
d Z · at + L = N

d Z · at + (L + NZ · t) =

N
d gcd(a, d)Z · t+ L = N

d Z · t, since Nt ∈ L and gcd(a,N) = 1.
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For the action of the Hecke operators, we analyze the effect in the Fourier Expansion instead, and only, at first, for

T (p) for p prime not dividing N . Let f have Dirichlet character ε. Then for i = 1, it follows easily since π1(d)k is the

indentity in the Fourier expansions, and the effect of the Hecke operators T (n) in such expansions does not depend on

the level if p does not divide the level. For i = 2, we get

π2(d)kT (p)f(q) = π2(d)k

∑
n≥1

(anpq
n + ε(p)pk−1anq

pn)

 = dk
∑
n≥1

(anpq
nd + ε(p)pk−1anq

pnd) and

T (p)π2(d)kf(q) = dkT (p)

∑
n≥1

anq
nd

 = dk
∑
n≥1

(anpq
nd + ε(p)pk−1anq

pnd),

so that they are equal. The result for T (n) with (n,N) = 1 follows by induction using the multiplicativity of the T (n),

together with the formulas for T (pn) in function of T (pk) for k < n and in function of the diamond action. �

Corollary 2.6. The Hecke algebra T(N) maps newforms to newforms.

Proof. If T ∈ T(N), f ∈ Sold
k (Γ1 (N)) and g ∈ Snew

k (Γ1 (N)) , then 〈T (g), f〉 = 〈g, T ?(f)〉 for some T ? ∈ T(N). Since

T ?(f) ∈ Sold
k (Γ1 (N)) , we have 〈g, T ?(f)〉 = 0, and hence 〈T (g), f〉 = 0 for all f. Hence T (g) ∈ Snew

k (Γ1 (N)) . �

3. The Main Theorem and its Consequences

Lemma 3.1. There is a basis {f1, . . . , fr} of Sk (Γ1 (N)) such that fi = αMi,N,di(gi) for some di and Mi with diMi | N

and gi ∈ Snew
k (Γ1 (Mi)) , such that both the gi and the fi are eigenfunctions of T(N).

Proof. If M | N, then T(N) maps Snew
k (Γ1 (M)) to itself, as T(N) ⊆ T(M). Since the T(N) are commutative normal

operators, by the Spectral Theorem we have a basis of eigenfunctions for Snew
k (Γ1 (M)) . Applying the α maps to such

basis for each M, they form a generating set for Sk (Γ1 (N)) , since, by 2.4, all the cusp forms are generated by the

αM,N,d(S
new
k (Γ1 (M))). Removing redundancies, we get a basis {f1, . . . , fr} satisfying our requirements, since by 2.5,

the fi are also eigenfunctions of T(N). �

Remark 3.2. Let T ∈ T(N) and f be an eigenfunction of T(N). We write f = c1f1 + . . . crfr in the basis above. Then

0 = T (f)− χf (T )f =

r∑
i=1

ci(χfi(T )− χf (T ))fi.

By the linear independence of the fi, we conclude that if ci 6= 0, then f and fi have the same character.

The following is the Main Theorem of the Atkin-Lehner Theory, which will be proved in the last section.

Theorem 3.3 (Main Theorem). Let f ∈ Sk (Γ1 (N)) , say f(q) =
∑
n≥0 anq

n. Suppose that an = 0 if (n,N) = 1.

Then there are gp ∈ Sk (Γ1 (N/p)) for each p | N such that f =
∑
p|N π2(p)k(gp).

For the rest of this section we develop the consequences of this theorem.

Theorem 3.4. Let f ∈ Sk (Γ1 (N)) be an eigenfunction of T(N). If a1 = 0, then f ∈ Sold
k (Γ1 (N)) .



4 MURILO CORATO ZANARELLA

Proof. Denote by λn = χf (T (n)) the eigenvalue of T (n). We have, for p - N, that 0 = λpa1 = ap and also that

λpapv = apv+1 + ε(p)pk−1apv−1 . By induction we conclude apv = 0 for all v ≥ 0, and by multiplicativity this implies

an = 0 for all (n,N) = 1. By the Main Theorem, we conclude f is an oldform. �

Remark 3.5. In particular, if f is a nonzero newform, then a1 6= 0. When a1 = 1, we say f is normalized.

Theorem 3.6 (Multiplicity One Theorem). Let f ∈ Snew
k (Γ1 (N)) nonzero and g ∈ Sk (Γ1 (N)) be eigenfunctions of

T(N) with the same eigencharacter. Then g is a multiple of f.

Moreover, the space Snew
k (Γ1 (N)) is the sum of the eigenspaces of T(N) whose eigencharacters have multiplicity

one, while Sold
k (Γ1 (N)) is the sum of the eigenspaces whose eigencharacters have multiplicity greater than one.

Proof. Write g = gnew+gold where these are respectively the new and old parts of g. By 3.2, we have that f, g, gnew, gold

all have the same character. So we can prove the first statement separately for g being a newform and an oldform.

If g = gnew, we may assume by 3.5 that both f and g are normalized. Then f −g would be a newform eigenfunction

of T(N) with first coeficient 0, hence must be 0 by 3.4. Hence g is a multiple of f.

If g = gold, write g =
∑r
i=1 ciπ1(di)π2(d′i)gi, for gi newforms eigenfunctions of level N

did′i
< N and ci 6= 0. If r > 0, let

h = π1(d1d
′
1)g1, which has the same character of f by 3.2. By 3.5, we may choose a constant c such that a1(f−ch) = 0.

Then this means that f − ch, being an eigenfunction, is an oldform. Since h is an oldform, then so is f. But this means

that f = 0, a contradiction which forces r = 0, hence g = 0 in the first place.

For the second statement, we note that an oldform eigenfunction always has eigencharacter of multiplicity greater

than one, since if g has level N
d for d > 1, then π1(d)g and π2(d)g are linearly independent but share the same

eigencharacter. Moreover, by the first statement, the eigenspaces containing a newform are one dimensional. Since

the eigenspaces of T(N) generate Sk (Γ1 (N)) by 3.1, we conclude the second statement. �

Corollary 3.7. If f ∈ Snew
k (Γ1 (N)) is an eigenfunction of T(N), then f is an eigenform for the entire T.

Proof. For any T ∈ T, we have that Tf is also a newform which is eigenfunction for T(N). Moreover, it shares the

same character of f by the commutativity of T. Hence Tf is a multiple of f by the previous theorem. Since this holds

for any T ∈ T, we conclude f is an eigenform for all of T. �

Definition 3.8. We denote by N (N) the normalized newforms of level N eigenfunctions for T(N), and hence for T.

Remark 3.9. By 3.1, N (N) generate Snew
k (Γ1 (N)) . By 3.6, its elements have different characters, so they form a

basis of Snew
k (Γ1 (N)) . Indeed, if we had a minimal linear dependence

∑
f∈N (N) cff = 0 with cg 6= 0, we can apply

T − χg(T ) to it, and get
∑
f∈N (N) cf (χf (T ) − χg(T ))f = 0, and so, since we chose a minimal linear dependence, we

must have cf (χf (T )− χg(T )) = 0 for all f and T, and hence cf = 0 for all f in the first place.

Lemma 3.10. For f ∈ N (M) and M | N, we denote Sf (N) =
∑
d|N/M C · αM,N,d(f). Then, in fact, we have

Sf (N) =
⊕

d|N/M C · αM,N,d(f), that is, the αM,N,d(f) are linearly independent.
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Proof. Write f(q) =
∑
n≥1 anq

n and let n′ ≥ 1 be the first index with an′ 6= 0. Assume by contradiction that∑
d|N/M cdαM,N,d(f) = 0 with not all the cd equal to 0. Let d′ be the smallest index such that cd′ 6= 0. Then we have

the Fourier expansion S =
∑
d|N/M cdd

kf(qd) = 0. Since the exponents of q in f(qd) start with dn′, we have that the

smallest exponent of q in S is d′n′, and such term comes only from cd′(d
′)kf(qd

′
). Hence, the coefficient of qd

′n′ in S

is cd′(d′)kad′ 6= 0, which is a contradiction. �

Note that the elements of Sf (N) share the same T(N)−characters by 2.5. In fact, Sf (N) is precisely the eigenspace
of f under T(N). This is a corollary of the following deep theorem, the proof of which we only sketch.

Theorem 3.11. If f ∈ N (M1), g ∈ N (M2) for M1,M2 | N and they share the same eigencharacter for T(N), then

M1 = M2 and f = g.

Sketch of Proof. Since f and g are newforms, they are eigenfunctions for all of T by 3.7, so one can prove that their

L−series satisfy an Euler product and a functional equation similar to the case of level 1. Since they share the same

eigencharacter away from N, we have

L(f, s)

L(g, s)
=

(
M1

M2

)s/2∏
p|N

1− χg(p)p−s + εg(p)p
k−1−2s

1− χf (p)p−s + εf (p)pk−1−2s

for <(s) > k
2 + 1, and hence on the entire plane since both sides are meromorphic. The functional equation then gives(
M1

M2

)s/2∏
p|N

1− χg(p)p−s + εg(p)p
k−1−2s

1− χf (p)p−s + εf (p)pk−1−2s
= c

(
M1

M2

)(k−s)/2∏
p|N

1− χg(p)ps−k + εg(p)p
2s−k−1

1− χf (p)ps−k + εf (p)p2s−k−1
,

for a constant c, which rearranges to(
M1

M2

)s∏
p|N

1− χg(p)p−s + εg(p)p
k−1−2s

1− χf (p)p−s + εf (p)pk−1−2s
= c

(
M1

M2

)k/2∏
p|N

1− χg(p)ps−k + εg(p)p
2s−k−1

1− χf (p)ps−k + εf (p)p2s−k−1
.

Since both sides are Dirichlet series, the coefficients of n−s on both sides must be equal for each n. Hence(
(M1)p
(M2)p

)s
1− χg(p)p−s + εg(p)p

k−1−2s

1− χf (p)p−s + εf (p)pk−1−2s
= cp

1− χg(p)ps−k + εg(p)p
2s−k−1

1− χf (p)ps−k + εf (p)p2s−k−1

for each p | N, where (Mi)p denotes the p−part of Mi and cp is some constant. Analyzing these equalities for all p

and with some more analytic input about the absolute values of χf (p) and χg(p), one can conclude that M1 = M2

and that χf (p) = χg(p) for all p, and hence that χf = χg. Then, by 3.6, this implies f = g. �

Corollary 3.12. Let f ∈ N (M) for M | N. Then Sf (N) is the T(N)−eigenspace defined by f.

Proof. Denote by T(χ) the T(N)−eigenspace of eigencharacter χ. Then we have, by 3.1,

Sk (Γ1 (N)) =
∑

f∈N (M), M |N

Sf (N) ⊆
∑

f∈N (M), M |N

T(χf ) ⊆
⊕
χ

T(χ) = Sk (Γ1 (N)) .

So we must have equality in all ⊆ . However, by the theorem above we have that all χf are distinct, which implies all

Sf (N) ⊆ T(χf ) are equalities, and hence that Sf (N) is the full eigenspace defined by f for each f ∈ N (M). �

Corollary 3.13 (Decomposition Theorem).

Sk (Γ1 (N)) =
⊕
dM |N

αM,N,d (Snew
k (Γ1 (M))) .
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Proof. Doing the eigenspace decomposition of Sk (Γ1 (N)) by T(N), we get

Sk (Γ1 (N)) =
⊕

f∈N (M), M |N

Sf (N).

By 3.10 and 3.9, this becomes

Sk (Γ1 (N)) =
⊕

f∈N (M), M |N

 ⊕
d|N/M

C · αM,N,d(f)

 =
⊕
dM |N

 ⊕
f∈N (M)

C · αM,N,d(f)

 =
⊕
dM |N

αM,N,d (Snew
k (Γ1 (M))) .

�

4. Proof of the Main Theorem
We recall the statement of the Main Theorem:

Theorem (Main Theorem - Version 1). Let f ∈ Sk (Γ1 (N)) , say f(q) =
∑
n≥0 anq

n. Suppose that an = 0 if (n,N) = 1.

Then there are gp ∈ Sk (Γ1 (N/p)) for each p | N such that f =
∑
p|N π2(p)k(gp).

The first step is changing congruence subgroups from Γ1(N) to Γ1(N).We note that the elements αd = ( d 0
0 1 ) satisfy

π2(d)kf = d [αd]k f.

One can check easily that αNΓ1(N)α−1N = Γ1(N). Hence, for all N we have the corresponding isomorphisms
Nk−1 [α−1N ]k : Sk (Γ1 (N))→ Sk

(
Γ1 (N)

)
, acting in the Fourier expansions as∑

anq
n 7→

∑
anq

n
N

where qN = q1/N = e2πiz/N . Let the map ιd take f(z) to f(dz). Then, for N = dM, we have the commutative diagram

Sk (Γ1 (M)) Sk (Γ1 (N))

Sk
(
Γ1 (M)

)
Sk
(
Γ1 (N)

)
ιd

Mk−1[α−1
M ]

k
Nk−1[α−1

N ]
k

incl

and in particular, for d = p, M = N
p , the Main Theorem becomes:

Theorem (Main Theorem - Version 2). Let f ∈ Sk
(
Γ1 (N)

)
, say f(qN ) =

∑
n≥0 anq

n
N . Suppose that an = 0 if

(n,N) = 1. Then there are gp ∈ Sk
(
Γ1 (N/p)

)
for each p | N such that f =

∑
p|N gp.

Now we want to translate this statement to linear algebra. For a d | N, we consider the congruence subgroup

Γd = Γ1(N) ∩ Γ0(N/d) =

{(
a b
c d

)
:
N

d
| b, N | c, a ≡ d ≡ 1 mod N

}
.

One can easily check that a set of representatives for Γ(N)\Γd is
{
βb =

(
1 bN/d
0 1

)
: 0 ≤ b < d

}
.

We consider the following projection to Sk(Γd), which is a trace operator.

πd : Sk(Γ(N)) → Sk(Γ(N))

f 7→ 1
d

∑d−1
b=0 [βb]k f

Lemma 4.1. πd
(∑

n≥1 anq
n
N

)
=
∑
n : d|n anq

n
N .

Proof. We have

πd

∑
n≥1

anq
n
N

 =
1

d

d−1∑
b=0

∑
n≥1

ane
2πi(z+bN/d)n/N =

1

d

∑
n≥1

d−1∑
b=0

anq
n
Ne

2πibn/d =
1

d

∑
n≥1

anq
n
N

d−1∑
b=0

e2πibn/d =
∑
n : d|n

anq
n
N .

�
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Corollary 4.2. If d1d2 | N, then πd1 and πd2 commute.

We want to define the projection π that preserves only the part of f away from N, that is,

π(f) =
∑
n≥1

anq
n
N 7→

∑
n : (n,N)=1

anq
n
N .

By the Inclusion-Exclusion principle, such projection is

π =
∏
p|N

(1− πp).

This allows us to rephrase the hypotheses of the Main Theorem as f ∈ Sk
(
Γ1 (N)

)
∩Ker (π) .

Lemma 4.3. Ker (π) =
∑
p|N Im (πp) .

Proof. If we have two commuting projections α and β, then Ker (αβ) = Ker (α) + Ker (β) . In fact, ⊇ is obvious, and

if x ∈ Ker (αβ) , then we write x = y + z where y = βx, z = x− y, and we have z ∈ Ker (β) and y ∈ Ker (α) .

In particular, since 1− πp are projections,

Ker (π) =
∑
p|N

Ker (1− πp) =
∑
p|N

Im (πp) .

�

As Im (πp) = Sk(Γp), we can reformulate the Main Theorem as the ⊆ in the following theorem. (the ⊇ is trivial)

Theorem (Main Theorem - Version 3).

Sk
(
Γ1 (N)

)
∩
∑
p|N

Sk(Γp) =
∑
p|N

Sk
(
Γ1 (N/p)

)
.

By considering the action of G = SL2(Z/NZ) on the complex vector space Sk(Γ(N)), we can use representation
theory to solve this question. Let N =

∏n
i=1 p

ei
i , so that G =

∏n
i=1Gi where Gi = SL2(Z/peii Z). We define

Hi = Γ1(peii )/Γ(peii ) Li = Γ1(pei−1i )/Γ(peii ) Ki =
(
Γ1(peii ) ∩ Γ0(pei−1i )

)
/Γ(peii )

subgroups of Gi in order that

Sk(Γ1(N)) = Sk(Γ(N))H Sk(Γ1(N/pi)) = Sk(Γ(N))
∏

j 6=iHj×Li Sk(Γpi) = Sk(Γ(N))Ki ,

where H =
∏n
i=1Hi. Note this is true since we constructed Hi,Ki and Li precisely such that

Γ1(N)/Γ(N) = H Γ1(N/pi)/Γ(N) =
∏
j 6=i

Hj × Li Γpi/Γ(N) = Ki.

Lemma 4.4. Li = 〈Hi,Ki〉 .

Proof. ⊇ is clear. We write p = pi, e = ei for this proof. Let 〈Hi,Ki〉 = R and l ∈ Li. We will replace l repeatedly by

an element of RlR until it becomes an element of R. Write l =
(
a b
c d

)
.

We first eliminate the cases p | ad (which only can happen when e = 1). If p | a, then p does not divide b, and them

l′ = l ( 1 0
1 1 ) does not have p | a′. Similarly, if p | d, then p does not divide c, so l′ = l ( 1 1

0 1 ) suffices.

Now we reduce to pe | b, c. For b, this is done by left multiplying by
(
1 β
0 1

)
for β ≡ −bd−1 mod pe. For c, this is

done by right multiplying by
(
1 0
γ 1

)
for γ ≡ −cd−1 mod pe.
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So now we have pe | b, c and a ≡ d ≡ 1 mod pe−1. As det(l) = 1, we have ad ≡ 1 mod pe. Now consider the matrix

γ =

1 1− a

0 1


 1 0

−1 1


1 1− d

0 1


1 0

a 1

 =

a+ a(1− ad) 1− ad

ad− 1 d

 ≡ l mod pe.

Each term of the left product belongs to R, so γ ∈ R. Since lγ−1 ≡ 1 mod pe, we get l′ = lγ−1 ∈ R, as we wanted. �

Corollary 4.5.
∏
j 6=iHj × Li = 〈H,Ki〉 .

Hence, the Main Theorem becomes:

Theorem (Main Theorem - Version 4). Let H and Ki as above. Then

Sk(Γ(N))H ∩
∑
pi|N

Sk(Γ(N))Ki =
∑
pi|N

Sk(Γ(N))〈H,Ki〉.

By decomposing Sk(Γ(N)) into irreducible representations of G, the Main Theorem follows from:

Theorem 4.6. Let V be an irreducible representation of a group G =
∏n
i=1Gi, with subgroups H =

∏n
i=1Hi and

K =
∏n
i=1Ki. Then

V H ∩
n∑
i=1

V Ki =

n∑
i=1

V 〈H,Ki〉.

Proof. If we denote V 〈Hi,Ki〉 = Wi, then we may write V Hi = Wi⊕Ui and V Ki = Wi⊕Ti. Then Ui and Ti are linearly

disjoint, since we have Ui ∩ Ti ⊆ V Hi ∩ V Ki = V 〈Hi,Ki〉. Since the representation theory of G is the tensor product of

the representation theory of the Gi, we have V = ⊗ni=1Vi for irreducible representations of Gi and

V H =

n⊗
i=1

Wi ⊕ Ui, V Ki = V1 ⊗ · · · ⊗ (Wi ⊕ Ti)⊗ · · · ⊗ Vn,

V 〈H,Ki〉 = (W1 ⊕ U1)⊗ · · · ⊗Wi ⊗ · · · ⊗ (Wn ⊕ Un).

Now we can choose basis b1i , . . . , b
ri
i for each Vi such that we can choose basis for Ui,Wi, Ti as subsets of such basis.

Then a basis for V is {ba11 ⊗ · · · ⊗ barr : 1 ≤ ai ≤ ri}. In this way, all of V H ,
∑n
i=1 V

Ki and
∑n
i=1 V

〈H,Ki〉 have basis

as subsets from this basis, namely:

V H = span({ba11 ⊗ · · · ⊗ barr : baii ∈Wi ⊕ Ui}),
n∑
i=1

V Ki = span({ba11 ⊗ · · · ⊗ barr : for some i, baii ∈Wi ⊕ Ti}),

n∑
i=1

V 〈H,Ki〉 = span({ba11 ⊗ · · · ⊗ barr : baii ∈Wi ⊕ Ui and for some i, baii ∈Wi}).

Now it is clear that the intersection of the first two is the third one, given that (Wi⊕Ui)∩(Wi⊕Ti) = Wi⊕(Ui∩Ti) = Wi,

since Wi, Ui and Ti are pairwise disjoint. �

I pledge my honour that this paper represents my own work in accordance with University regulations.
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