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1. Introduction

Hecke’s fundamental discovery about modular forms is that the space Mk(Γ1) of modular forms of weight k > 0 for
Γ1 = SL2(Z) is spanned in a unique way by modular forms that are eigenfunctions of all Hecke operators simultaneously.
These Hecke eigenforms, moreover, form a bridge to other areas of mathematics, such as number theory and algebraic
geometry.

Definition 1.1. Let

f(z) =
∑
n≥0

c(n)qn ∈Mk(Γ1)

be a (nonzero) modular form of weight k > 0. We call f a Hecke eigenform if it is an eigenfunction for all Hecke

operators T (m). That is, if there are complex numbers λ(m) ∈ C such that

T (m)f = λ(m)f

for all m ∈ Z>0. Moreover, we call it a normalized Hecke eigenform if it also satisfies c(1) = 1.

Example 1.2. Bryan proved that Ek is a Hecke eigenform with eigenvalues σk−1(n) for T (n), with corresponding

normalized Hecke eigenform being

Gk = (−1)k/2
Bk/2

2k
Ek = (−1)k/2

Bk/2

2k
+
∑
n≥1

σk−1(n)qn.

Theorem 1.3. Let f be a Hecke eigenform, and let the notation be as above. Then:

(a) c(1) 6= 0.

(b) If f is also normalized (that is, c(1) = 1), then

λ(n) = c(n).

Proof. Bryan proved that

T (n)f(z) =
∑
m≥0

γn(m)qm

for

γn(m) =
∑

1≤a|(n,m)

ak−1c
(nm
a2

)
,

and since f is a Hecke eigenform, we know that γn(m) = λ(n)c(m). In particular, for m = 1 this amounts to

c(n) = λ(n)c(1). As f is nonzero, me must have c(1) 6= 0, as otherwise all c(n) would be zero. Moreover, if f is

normalized, then this also amounts to c(n) = λ(n). �
1
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Corollary 1.4. If f, g are two normalized Hecke eigenforms with same eigenvalues λ(n) for all n > 0, then f = g.

Proof. By the previous theorem 1.3, the eigenvalues λ(n) determine the coefficients of the Fourier expansion, so they

determine the normalized Hecke eigenform. �

Corollary 1.5. Let f be a normalized Hecke eigenform. Then we have the identities: c(m)c(n) = c(mn) if (m,n) = 1.

c(p)c(pn) = c(pn+1) + pk−1c(pn−1) if p is prime and n ≥ 1.

Proof. This follows directly by comparing the coeficient of q in the following identities proved by Bryan: T (m)T (n)f = T (mn)f if (m,n) = 1.

T (p)T (pn)f = T (pn+1)f + pk−1T (pn−1)f if p is prime and n ≥ 1.

�

2. Analytic Perspective on Hecke Eigenforms

These properties on the coefficients of a Hecke eigenform f can be translated to an Euler factorization-type formula
for some Dirichlet series L(f, s) = Φf (s) associated with f .

Definition 2.1. If f is a modular form, we associate to f its Hecke L-series L(f, s) = Φf (s) defined by

L(f, s) = Φf (s) =
∑
n≥1

c(n)

ns
.

Remark 2.2. At a first moment, it is not clear where this Dirichlet series converge, or whether it converges anywhere

at all. However, by a theorem of Hecke, for any modular form f we have c(n) = O(nk−1), 1 and hence such L-series

actually converges absolutely at least for <(s) > k.

Example 2.3. For Gk, we have c(n) = σk−1(n) for n ≥ 1, so

L(Gk, s) =
∑
n≥1

σk−1(n)

ns
=
∑
a,d≥1

ak−1

asds
=
∑
d≥1

1

ds

∑
a≥1

ak−1

as
= ζ(s)ζ(s− k + 1).

Using the Euler product of ζ(s), we may write this as

L(Gk, s) =
∏

p prime

1

1− p−s
∏

p prime

1

1− p−s+k−1
=

∏
p prime

1

(1− p−s)(1− p−s+k−1)
=

∏
p prime

1

1− σk−1(p)p−s + pk−1−2s
.

In fact, this generalizes for all normalized Hecke eigenforms:

Theorem 2.4. If f is a normalized Hecke eigenform, then we have the following Euler product-type formula:

L(f, s) =
∏

p prime

1

1− c(p)p−s + pk−1−2s
.

1For completeness, we include a proof of this result in the next section.
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Proof. Since the function c(n) is multiplicative, and converges absolutely for <(s) > k, we have the usual product

formula 2

L(f, s) =
∏

p prime

∑
n≥0

c(pn)

pns

 .

Hence we are left to prove that ∑
n≥0

c(pn)

pns
=

1

1− c(p)p−s + pk−1−2s
.

For this, we denote Φf,p(s) =
∑
n≥0

c(pn)
pns and consider the expression

Sp(s) = −c(p)Φf,p(s) + psΦf,p(s) + pk−1−sΦf,p(s) = −c(p)
∑
n≥0

c(pn)

pns
+
∑
n≥0

c(pn)

p(n−1)s
+ pk−1

∑
n≥0

c(pn)

p(n+1)s
.

Since it converges absolutely for <(s) > k, we can write this as

Sp(s) =
∑
n≥1

(
−c(p)c(pn) + c(pn+1) + pk−1c(pn−1)

pns

)
− c(p) + (c(p) + ps) = ps,

where the last equality follows from the term inside the summation being 0 by 1.5. So

ps = Sp(s) = (−c(p) + ps + pk−1−s)Φf,p(s),

which implies

Φf,p(s) =
1

1− c(p)p−s + pk−1−2s
,

and hence that

L(f, s) =
∏

p prime

1

1− c(p)p−s + pk−1−2s
.

�

In fact, these L-series are very rich analytic objects. For instance, one have the following theorem due to Hecke:

Theorem. If f is a (cusp) modular form of weight k > 0, then L(f, s) extends to a (entire) meromorphic function in

the whole complex plane. Moreover, the function

Xf (s) = (2π)−sΓ(s)L(f, s), where Γ(s) =

∫ ∞
0

ts−1e−t dt,

satisfies the functional equation

Xf (s) = (−1)k/2Xf (k − s).

In fact, Hecke proved also a converse: that if a Dirichlet series Φ satisfy some functional equation of this type and
some regularity and growth conditions, then it comes from a modular form.

2 This holds since

L(f, s)−
∏

p≤N prime

∑
n≥0

c(pn)

pns

 =
∑

n with all prime factors>N

c(n)

ns
−−−−→
N→∞

0.
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3. The Proofs

3.1. Bounds on Fourier coefficients. We prove the bound c(n) = O(nk−1) for any modular form f . In fact, we
start with a better bound for cusp forms:

Lemma 3.1. Let f be a cusp form of weight k > 0. Then c(n) = O(nk/2).

Proof. We write y = =(z). As f is a cusp form, we have c(0) = 0, hence |f(z)| = O(q) = O(e−2πy) when q → 0. Let

φ(z) = |f(z)|yk/2. Then we have

φ(z + 1) = |f(z + 1)|yk/2 = |f(z)|yk/2 = φ(z)

φ
(
− 1
z

)
= |f

(
− 1
z

)
|
(

y
|z|2

)k/2
= |zk||f(z)|yk/2|z|−k = |f(z)|yk/2 = φ(z)

So φ(z) is invariant under SL2(Z). Moreover, it is continuous in the fundamental domain, and it goes to 0 as y →∞,

since

φ(z) = |f(z)|yk/2 = yk/2O(e−2πy) = o(1).

Hence φ(z) is actually bounded, say φ(z) ≤M for all z. Then this means |f(z)| ≤My−k/2. Now fix y > 0 and let Cy

be the circle x 7→ q = e2πi(x+iy). Then the residue theorem gives us

c(n) =
1

2πi

∫
Cy

f(z)q−n−1 dq =

∫ 1

0

f(x+ iy)q−n dx,

so that |c(n)| ≤My−k/2e2πny. In particular, for y = 1
n , this amounts to |c(n)| ≤ e2πMnk/2. �

Theorem 3.2. If f is a modular form of weight k > 0, then c(n) = O(nk−1).

Proof. We know that the space Mk(Γ1) of modular forms is spanned by the cusp forms M0
k (Γ1) and by Ek, since if f

is a modular form of weight k, then f − c(0)Ek is a cusp form.

Hence, by the previous lemma 3.1, it suffices to prove this bound for f = Ek. Eric showed that

Ek(z) = 1 +
2k(−1)k/2

Bk/2

∑
n≥1

σk−1(n)qn,

so that c(n) = O(σk−1(n)). Moreover, since

σk−1(n)

nk−1
=
∑
d|n

(
d

n

)k−1
=
∑
d|n

1

dk−1
≤
∑
d≥1

1

dk−1
= ζ(k − 1),

we have σk−1(n) = O(nk−1), hence c(n) = O(nk−1) as we wanted. �

3.2. Extension of L-series. We prove that the L-series extend meromorphically to the entire complex plane. The
proof is similar to the proof that ζ(s) extends meromorphically.

Lemma 3.3.

(2π)−sΓ(s) = ns
∫ ∞
0

ts−1e−2πnt dt .

Proof. Let λ = 2πn. We have

Γ(s) =

∫ ∞
0

ts−1e−t dt =

∫ ∞
0

(λt)s−1e−λt d(λt) = λs
∫ ∞
0

ts−1e−λt dt,

and substituting λ = 2πn gives the desired result. �
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Theorem 3.4. If f is a (cusp) modular form of weight k > 0, then L(f, s) extends to a (entire) meromorphic function

in the whole complex plane. Moreover, the function

Xf (s) = (2π)−sΓ(s)L(f, s)

satisfies the functional equation

Xf (s) = (−1)k/2Xf (k − s).

Proof. We first prove this for a cusp form. We consider Xf (s) = (2π)−sΓ(s)L(f, s). Then, by the previous lemma:

Xf (s) =
∑
n≥1

c(n)(2π)−sΓ(s)

ns
=
∑
n≥1

c(n)

∫ ∞
0

ts−1e−2πnt dt .

For <(s) > k, this converges absolutely, 3 so we can change the order of the summation and the integral:

Xf (s) =

∫ ∞
0

ts−1
∑
n≥1

c(n)e−2πnt dt =

∫ ∞
0

ts−1(f(it)− f(∞)) dt .

We already know that f(it) − f(∞) decays exponentially as t → ∞. As f is a cusp form, f(∞) = 0, and since

f
(
i 1t
)

= (it)kf(it), f(it) also decays exponentially as t→ 0. Hence Xf (s) is holomorphic in the entire complex plane,

and so

L(f, s) = (2π)sXf (s)
1

Γ(s)

can also be extended holomorphically.

For the functional equation, we have

Xf (s) =

∫ ∞
0

ts−1f(it) dt =

∫ ∞
0

ts−1(it)−kf

(
i
1

t

)
dt =

∫ ∞
0

uk+1−si−kf(iu)u−2 du = (−1)k/2
∫ ∞
0

tk−s−1f(iu) du,

which is precisely

Xf (s) = (−1)k/2Xf (k − s).

Now, as before, we just need to prove that the modular forms Gk have meromorphic L-series that satisfy the

functional equation. We already saw in 2.3 that L(Gk, s) = ζ(s)ζ(s− k + 1), which is meromorphic.

It remains to prove it satisfy the functional equation. We denote ζ̃(s) = π−s/2Γ(s/2)ζ(s), satisfying ζ̃(s) = ζ̃(1−s),

so that

XGk
(s) = (2π)−sΓ(s)L(f, s) = (2π)−sΓ(s)ζ(s)ζ(s− k + 1) = ζ̃(s)ζ̃(s− k + 1)2−sπ(k−1)/2 Γ(s)

Γ(s/2)Γ((s− k + 1)/2)
.

By the multiplication formula Γ(2z) = Γ(z)Γ(z + 1
2 ) 22z−1
√
π
, 4 we may write this as

XGk
(s) =

1

2
ζ̃(s)ζ̃(s− k + 1)πk/2−1

Γ((s+ 1)/2)

Γ((s− k + 1)/2)
.

3This is true since if l = <(s) > k, u = nt and v = n,

∑
n≥1

|c(n)|
∫ ∞
0
|ts−1e−2πnt| dt ≤ C

∫ ∞
1

∫ ∞
0

nk−1tl−1e−2πnt dt dn = C

∫ ∞
1

∫ ∞
0

ul−1vk−l+1e−2πuv−1 du dv = C · Γ(s)

∫ ∞
1

vk−l dv <∞.

4This and the following identity of Γ are proved as follows: one check both sides have the same poles with same residues, so that their

difference is entire. Then one prove the difference is bounded, by checking it is invariant under some horizontal translation and that tends

to 0 for i∞. By Liouville’s theorem, this implies the difference is a constant, and evaluation at a particular point gives the equality.
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Then
XGk

(s)

XGk
(k − s)

=
Γ((s+ 1)/2)

Γ((s− k + 1)/2)
:

Γ((k − s+ 1)/2)

Γ((−s+ 1)/2)
.

Finally, using that Γ(z)Γ(1− z) = π
sinπz , we get

XGk
(s)

XGk
(k − s)

=
sin(π(s+ 1)/2)

sin(π(s− k + 1)/2)
= (−1)k/2

as k/2 is an integer.

As the modular forms Mk(Γ1) are generated by the cusp forms M0
k (Γ1) and Gk, we conclude the validity of the

theorem in the general case. �

3.3. Basis formed by Hecke eigenforms. We mention how one proves that the space Mk(Γ1) has a unique
basis of normalized Hecke eigenforms.

Theorem 3.5. The spaceMk(Γ1) of modular forms of weight k > 0 has a unique basis of normalized Hecke eigenforms.

Moreover, the Fourier coefficients for such forms are real numbers, and all Hecke eigenforms are a multiple of one of

the elements of this basis.

Sketch of Proof. One introduces a Hermitian positive nondegenerate scalar product (the Petersson scalar product) on

the space of cusp forms M0
k (Γ1) by

〈f, g〉 =

∫
D

f(z)g(z)yk−2 dx dy .

One can check that the T (n) are self-adjoint operators for this scalar product, that is,

〈T (n)f, g〉 = 〈f, T (n)g〉 .

Then, since the operators T (n) commute with each other and are self-adjoint, one can find, by linear algebra, a

basis formed by simultaneous eigenfunctions for all T (n). This is simply a basis of Hecke eigenforms, and we can

normalize each one. Moreover, all the eigenvalues for such basis are real numbers, that is, the Fourier coefficients of

such normalized Hecke eigenforms are real numbers.

Such basis ofM0
k (Γ1) together with Gk form a basis of Hecke eigenforms ofMk(Γ1). Also, all the Fourier coefficients

in these elements are real numbers.

For the uniqueness of such basis, let f1, . . . , fn be a basis of normalized Hecke eigenforms, where n = dim(Mk(Γ1)),

and suposse fn+1 =
∑n
i=1 aifi is another Hecke eigenform. Then if T (m)fi = λi(m)fi, we must have

λn+1(m) ·

(
n∑
i=1

aifi

)
= λn+1(m)fn+1 = T (m)fn+1 = T (m)

(
n∑
i=1

aifi

)
=

n∑
i=1

aiT (m)fi =

n∑
i=1

aiλi(m)fi.

Since the f1, . . . , fn are linearly independent, this means that λn+1(m)ai = λi(m)ai for all m ∈ Z>0 and 1 ≤ i ≤ n.

So if aj 6= 0 for some j, we conclude that λn+1(m) = λj(m) for all m ∈ Z>0. Since f1, . . . , fn are distinct normalized

Hecke eigenforms, this cannot happen for two distinct indexes j because of 1.4. As fn+1 is nonzero, this means that

precisely one of the ai is nonzero, and hence that fn+1 is some multiple of one of the fi for 1 ≤ i ≤ n, again by 1.4.

This also proves the last assertion, that all Hecke eigenforms are a multiple of one of the fi. �
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