Modular Symbols

MURILO CORATO ZANARELLA

November 14, 2017

1. INTRODUCTION

Dan proved the following proposition:

Proposition 1.1. For $\alpha, \beta, \gamma \in \mathfrak{h}^*$, we have

- (a) $\{\alpha, \beta\} + \{\beta, \gamma\} = \{\alpha, \gamma\}$
- (b) $\{g\alpha, g\beta\} = \{\alpha, \beta\}$ for $g \in \Gamma$.
- (c) If the genus of $\Gamma \setminus \mathfrak{h}^*$ is 0, then $\{\alpha, \beta\} \in H_1(\Gamma \setminus \mathfrak{h}^*, \mathbb{Z})$ iff $\beta \in \Gamma \alpha$.

Definition 1.2. Let $\Gamma \subseteq PSL_2(\mathbb{R})$. We call an element $g \in \Gamma$

- *elliptic* if it has a fixed point in \mathfrak{h} , that is, in the interior of the upper half plane. Such fixed points are called the *elliptic* points of \mathfrak{h}^* . These are the points α with $n_{\alpha} = |\operatorname{Stab}_{\Gamma}(\alpha)| > 1$.
- *parabolic* if it has a cusp as a fixed point.

Remark 1.3. For elliptic elements $g \in \Gamma$, one can show that the corresponding elliptic points must be a translation of one of the following:

- *i*, in which case *g* is a conjugate (in $PSL_2(\mathbb{Z})$) of *S*.
- $\rho = \frac{1}{2} + \frac{\sqrt{3}}{2}i$, in which case g is a conjugate (in $\text{PSL}_2(\mathbb{Z})$) of ST.

Moreover, such g cover all the elliptic elements of $PSL_2(\mathbb{Z})$.

In the parabolic case, the g's are precisely the conjugates (in $PSL_2(\mathbb{Z})$) of T^r , for some $r \in \mathbb{Z}$.

We denote by $X(\Gamma)$ the set of elliptic and parabolic elements of Γ . The preceding remark implies that:

Lemma 1.4. $X(\Gamma) = X(PSL_2(\mathbb{Z})) \cap \Gamma$.

Theorem 1.5. Let $\alpha \in \mathfrak{h}^*$. The map

$$\begin{array}{rcl} \phi_{\alpha} \colon & \Gamma & \to & H_1(\Gamma \backslash \mathfrak{h}^*, \ \mathbb{Z}) \\ & g & \mapsto & \{\alpha, \ g\alpha\} \end{array}$$

is a surjective group homomorphism which does not depend on the choice of α . The kernel is generated by the commutator Γ' of Γ and by $X(\Gamma)$, that is, the elliptic and parabolic elements of Γ .

Proof. The fact that ϕ_{α} is a group homomorphism follows from (a) and (b) of 1.1:

$$\phi_{\alpha}(gh) = \{\alpha, gh\alpha\} \stackrel{\text{(a)}}{=} \{\alpha, g\alpha\} + \{g\alpha, gh\alpha\} \stackrel{\text{(b)}}{=} \{\alpha, g\alpha\} + \{\alpha, h\alpha\} = \phi_{\alpha}(g) + \phi_{\alpha}(h).$$

Also from 1.1 it follows that $\phi = \phi_{\alpha}$ is independent of α , since if $\beta \in \mathfrak{h}^*$, then for $g \in \Gamma$,

$$\phi_{\alpha}(g) = \{\alpha, g\alpha\} \stackrel{\text{(a)}}{=} \{\alpha, \beta\} + \{\beta, g\beta\} + \{g\beta, g\alpha\} \stackrel{\text{(b)}}{=} \phi_{\beta}(g) + \{\alpha, \beta\} + \{\beta, \alpha\} \stackrel{\text{(a)}}{=} \phi_{\beta}(g) + \{\alpha, \alpha\} = \phi_{\beta}(g).$$

We denote by $\overline{\alpha}$ the projection of $\alpha \in \mathfrak{h}^*$ to $\Gamma \setminus \mathfrak{h}^*$. Let \mathfrak{h}^0 be the complement of $\mathrm{PSL}_2(\mathbb{Z})i \cup \mathrm{PSL}_2(\mathbb{Z})\rho$ in \mathfrak{h} , and let $D^0 = \Gamma \setminus \mathfrak{h}^* - \{\text{elliptic points and cusps}\}, \text{ so that } \overline{\mathfrak{h}^0} = D^0.$

To prove the remaining assertions, we must use a geometric interpretation of this homomorphism.

Since we proved ϕ does not depend on α , we can choose $\alpha \in \mathfrak{h}^0$.

We now define a surjective group homomorphism $\psi_{\alpha} : \pi_1(D^0, \overline{\alpha}) \to \Gamma$ by what follows: given a closed loop $\overline{\gamma}$ on D^0 starting at $\overline{\alpha}$, we can lift it uniquely to a (not necessarily closed) path γ on \mathfrak{h}^0 starting at α . ¹ The endpoint of such path β satisfies $\overline{\beta} = \overline{\alpha}$, so it is $\beta = g\alpha$ for a uniquely determined $g \in \Gamma$. Then we define $\psi_{\alpha}(\overline{\gamma}) = g$. It is a group homomorphism since if $\psi_{\alpha}(\overline{\gamma_1}) = g_1$, $\psi_{\alpha}(\overline{\gamma_2}) = g_2$, then a lift of $\overline{\gamma} = \overline{\gamma_1} \star \overline{\gamma_2}$ is $\gamma = \gamma_1 \star (g_1 \circ \gamma_2)$, and as

$$\gamma(1) = (g_1 \circ \gamma_2)(1) = g_1(\psi_\alpha(\overline{\gamma_2})\alpha) = g_1g_2\alpha,$$

we conclude $\psi_{\alpha}(\overline{\gamma}) = g_1 g_2 = \psi_{\alpha}(\overline{\gamma_1})\psi_{\alpha}(\overline{\gamma_2}).$

FIGURE 1. A visual description of the map ψ_{α} for $\Gamma = \text{PSL}_2(\mathbb{Z})$. Note how the path in $\Gamma \setminus \mathfrak{h}^*$ in the left correspond to the element $g = TS \in \Gamma$.

The surjectivity of ψ_{α} follows since, for any $g \in \Gamma$, there is a path γ from α to $g\alpha$ in \mathfrak{h}^0 (since elliptic points and cusps are a discrete set), and then $\psi_{\alpha}(\overline{\gamma}) = g$.

Given this description, one can see easily that the composite map

$$\tau \colon \pi_1(D^0, \overline{\alpha}) \xrightarrow{\psi_\alpha} \Gamma \xrightarrow{\phi} H_1(\Gamma \backslash \mathfrak{h}^*, \mathbb{Z})$$

coincides with the canonical homomorphism of the fundamental group of the surface D^0 into the homology group of its compactification $\Gamma \setminus \mathfrak{h}^*$. This immediately implies that the map ϕ is surjective. Furthermore, since ψ_{α} is also surjective,

¹This follows since $\mathfrak{h}^0 \to D^0$ is a covering map.

we may write

$$\operatorname{Ker}\left(\phi\right) = \psi_{\alpha}(\operatorname{Ker}\left(\psi_{\alpha} \circ \phi\right))$$

Since $H_1(\Gamma \setminus \mathfrak{h}^0, \mathbb{Z})$ is abelian, τ must factor into the abelianization of $\pi_1(D^0, \overline{\alpha})$. As $\pi_1(D^0, \overline{\alpha})^{\mathrm{ab}} \xrightarrow{\sim} H_1(D^0, \mathbb{Z})$, ² we have

$$\tau \colon \pi_1(D^0, \overline{\alpha}) \to \pi_1(D^0, \overline{\alpha})^{\mathrm{ab}} \xrightarrow{\sim} H_1(D^0, \mathbb{Z}) \to H_1(\Gamma \backslash \mathfrak{h}^*, \mathbb{Z})$$

Since $D^0 = \Gamma \setminus \mathfrak{h}^* - \{\text{elliptic points and cusps}\}$, one can see that the kernel of the last map is generated by small loops around each elliptic point or cusp. ³ For $\beta \in \{\text{elliptic points and cusps}\}$, we denote by γ_β such a loop.

This discussion shows that Ker $(\psi \circ \phi) = \pi_1(D^0, \overline{\alpha})' \langle \gamma_\beta \rangle$. Since ψ is surjective, this means

$$\operatorname{Ker}\left(\phi\right) = \Gamma'\left\langle\psi(\gamma_{\beta})\right\rangle.$$

So now it remains to prove that $\langle \psi(\gamma_{\beta}) \rangle = \mathcal{X}(\Gamma)$. For any such β , we can find a unique $g_{\beta} \in \mathrm{PSL}_2(\mathbb{Z})$ such that $g_{\beta}(\beta) \in \{i, \rho, i\infty\}$. Then $g_{\beta}\psi(\gamma_{\beta})g_{\beta}^{-1} = \psi(g_{\beta} \circ \gamma_{\beta})$, and since $g_{\beta} \circ \gamma_{\beta}$ is a small loop around one of $\{i, \rho, i\infty\}$, we can analyze those explicitly and conclude $g_{\beta}\psi(\gamma_{\beta})g_{\beta}^{-1}$ is S, TS or T^r for some r depending whether $g_{\beta}(\beta)$ is i, ρ or $i\infty$. This implies

$$\psi(\gamma_{\beta}) \in \mathcal{X}(\mathrm{PSL}_2(\mathbb{Z})) \cap \Gamma = \mathcal{X}(\Gamma),$$

This shows also that $\psi(\gamma_{\beta})$ fix β , and this, in turn, uniquely determine $\{\psi(\gamma_{\beta}), \psi(\gamma_{\beta})^{-1}\}$, given that it fixes β , if β is elliptic. If β is a cusp, we note $\psi(\gamma_{\beta})$ is a conjugate (in $\text{PSL}_2(\mathbb{Z})$) of T^H , and this, again, uniquely determine $\psi(\gamma_{\beta})$ together with the fact it fixes β . Finally the parabolic elements of X (Γ) are the conjugates of some T^{rH} that are inside Γ , for some $r \in \mathbb{Z}$, and so they are all generated by $\langle \psi(\gamma_{\beta}) \rangle$.

Hence $\langle \psi(\gamma_{\beta}) \rangle = X(\Gamma)$, and we conclude Ker $(\phi) = \Gamma' X(\Gamma)$.

2. DISTINGUISHED CLASSES

Let $J = \Gamma \setminus PSL_2(\mathbb{Z})$ be the set of right cosets. We define the map

$$\xi: J \to H_1(\Gamma \backslash \mathfrak{h}^*, \mathbb{R})$$

by: if $j \in J$ and g is any representative of the class j, let

$$\xi(j) = \{g(0), g(i\infty)\}.$$

By 1.1(b), this does not depend on the choice of representative g.

Definition 2.1. We define the classes in $\xi(J)$ as above to be the *distinguished classes*.

Remark 2.2. Note that the distinguished classes are not, in general, integral classes.

²This is called the *Hurewicz's theorem*.

³ For a proof of this, one can use the Mayer-Vietoris exact sequence. Around each elliptic or cusp β we take open sets U_{β} such that U_{β} are all disjoint, and let $U = \bigcup_{\beta} U_{\beta}, V = \Gamma \setminus \mathfrak{h}^* - \bigcup_{\beta} \{\beta\}$ so that $U \cap V = \bigcup_{\beta} (U_{\beta} - \{\beta\})$. Also $U \cap V$ has a retraction to $\coprod_r S^1$, where r is the number of elliptic points and cusps in $\Gamma \setminus \mathfrak{h}^*$. U has the same homology of $\coprod_r D^2$, and V is a deformation retract of D^0 . Finally, $U \cup V = \Gamma \setminus \mathfrak{h}^*$. By the exactness of $H_1 (\coprod_r S^1) \to H_1 (\coprod_r D^2) \oplus H_1 (D^0) \to H_1 (\Gamma \setminus \mathfrak{h}^*)$, and since $H_1 (\coprod_r D^2) = 0$ we get that the kernel we want is simply $\operatorname{Im} (\coprod_r S^1 \to H_1 (D^0))$.