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1. INTRODUCTION

Dan proved the following proposition:

Proposition 1.1. For «, 8,7 € h*, we have
(a) {o, B+ {8, 7} ={a, 7}

(b) {9, g8} ={«a, B} for g €T.
(c) If the genus of T'\h* is 0, then {«, S} € H1(T\b*,Z) iff § € Tar.

Definition 1.2. Let I' C PSLy(R). We call an element g € T’
e clliptic if it has a fixed point in b, that is, in the interior of the upper half plane. Such fixed points are called
the elliptic points of h*. These are the points o with n, = |Stabr(a)| > 1.

e parabolic if it has a cusp as a fixed point.

Remark 1.3. For elliptic elements g € I', one can show that the corresponding elliptic points must be a translation of

one of the following:

e 4, in which case g is a conjugate (in PSLy(Z)) of S.

° p= % + @i, in which case g is a conjugate (in PSLo(Z)) of ST.
Moreover, such g cover all the elliptic elements of PSLo(Z).

In the parabolic case, the g’s are precisely the conjugates (in PSLy(Z)) of T, for some r € Z.

We denote by X (I') the set of elliptic and parabolic elements of I'. The preceding remark implies that:
Lemma 1.4. X (T") = X (PSLy(Z)) NT.
Theorem 1.5. Let o € h*. The map

¢o: ' — Hi(I'\b", Z)

g = A{a, gaj
is a surjective group homomorphism which does not depend on the choice of a.. The kernel is generated by the commu-

tator TV of T and by X (T), that is, the elliptic and parabolic elements of T.

Proof. The fact that ¢, is a group homomorphism follows from (a) and (b) of

balgh) = {a, gha} ¥ {a, ga} + {ga, gha} 2 {a, ga} +{a, ha} = ¢alg) + da(h).
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Also from [I.1] it follows that ¢ = ¢, is independent of «, since if 3 € h*, then for g € T,

ba(9) = {0, ga} 2 {a, B} + {8, 9B} + {98, g0} 2 és(9) + {a, B} + {8, a} ¥ 65(9) + {a, @} = 65(9).

We denote by @ the projection of o € h* to I'\h*. Let h° be the complement of PSLy(Z)i UPSLy(Z)p in b, and let
D° =T\h* — {elliptic points and cusps}, so that h0 = D,

To prove the remaining assertions, we must use a geometric interpretation of this homomorphism.

Since we proved ¢ does not depend on o, we can choose a € h°.

We now define a surjective group homomorphism ), : 71 (D%, @) — I' by what follows: given a closed loop 7 on D°
starting at @, we can lift it uniquely to a (not necessarily closed) path  on h° starting at a. El The endpoint of such
path 3 satisfies 3 = @, so it is 3 = ga for a uniquely determined g € T'. Then we define ¥, (5) = g. It is a group

homomorphism since if ¥, (77) = g1, Yo (F2) = g2, then a lift of F =77 %73 is v = 71 * (91 ©72), and as
Y(1) = (91 072)(1) = g1 (Ya(R)a) = g1920,

we conclude ¥, (7) = g192 = Vo (1) Ve (72)-

FIGURE 1. A visual description of the map ), for I' = PSLy(Z). Note how the path in T'\h* in the

left correspond to the element g =TS € T.

The surjectivity of v, follows since, for any g € T, there is a path v from « to ga in h° (since elliptic points and
cusps are a discrete set), and then 1, (5) = g.

Given this description, one can see easily that the composite map
0 — Ya [ *
7:m (D", @) — T — Hi(T\b*, Z)

coincides with the canonical homomorphism of the fundamental group of the surface D into the homology group of its

compactification T'\h*. This immediately implies that the map ¢ is surjective. Furthermore, since v, is also surjective,

LThis follows since h0 — DO is a covering map.
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we may write
Ker (¢) = o (Ker (¢ 0 9)).
Since H;(T'\h°, Z) is abelian, 7 must factor into the abelianization of 71 (D% @). As 71 (D%, @) = H;(D°, Z),
we have
7o (DY, @) — (D% @) = Hy(DY, Z) — Hi(T\b*, Z).
Since DY = I'\h* — {elliptic points and cusps}, one can see that the kernel of the last map is generated by small
loops around each elliptic point or cusp. E| For /3 € {elliptic points and cusps}, we denote by 74 such a loop.

This discussion shows that Ker (¢ o ¢) = w1 (D%, @)’ (5) . Since 9 is surjective, this means

Ker (¢) =T (¢(v5)) -

So now it remains to prove that (1)(y3)) = X (I'). For any such §, we can find a unique gz € PSLo(Z) such that
g5(B) € {i,p,ic0}. Then ggw(yﬁ)ggl = 9(gp o vs), and since gg o s is a small loop around one of {3, p,ic0}, we can
analyze those explicitly and conclude ggi(73) ggl is S,TS or T" for some r depending whether gz(8) is 4, p or icc.
This implies

¥(vp) € X(PSLa(Z)) NI = X(I'),
This shows also that ¥(v3) fix 8, and this, in turn, uniquely determine {t(v3), % (75) "'}, given that it fixes 3, if 3 is
elliptic. If 3 is a cusp, we note ¥(v5) is a conjugate (in PSL2(Z)) of T, and this, again, uniquely determine v (vz)
together with the fact it fixes 3. Finally the parabolic elements of X (T') are the conjugates of some T that are inside
T, for some r € Z, and so they are all generated by (1(v3)) -
Hence (¢(v5)) = X (') , and we conclude Ker (¢) =TI" X (I). O

2. DISTINGUISHED CLASSES

Let J = I'\PSLy(Z) be the set of right cosets. We define the map
& J — Hi(T\h*,R)
by: if j € J and g is any representative of the class j, let
£(5) = {9(0), g(ico)}.
By b)7 this does not depend on the choice of representative g.

Definition 2.1. We define the classes in {(J) as above to be the distinguished classes.

Remark 2.2. Note that the distinguished classses are not, in general, integral classes.

2This is called the Hurewicz’s theorem.

3 For a proof of this, one can use the Mayer-Vietoris exact sequence. Around each elliptic or cusp 8 we take open sets Ug such that
Ug are all disjoint, and let U =z Ug, V =I'\h* — g{B} so that UNV = Ug(Us — {B}). Also U NV has a retraction to ][, S, where
r is the number of elliptic points and cusps in I'\b*. U has the same homology of [],. D2, and V is a deformation retract of D. Finally,
UUV =T\b*. By the exactness of H1 ([, S') — H1 (1], D?) ® H1 (D°) — Hy (I'\b*), and since H; ([],. D?) = 0 we get that the kernel

we want is simply Im (]_[T St — Hy (DO)) .



	1. Introduction
	2. Distinguished Classes

