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1. Introduction

Dan proved the following proposition:

Proposition 1.1. For α, β, γ ∈ h∗, we have

(a) {α, β}+ {β, γ} = {α, γ}

(b) {gα, gβ} = {α, β} for g ∈ Γ.

(c) If the genus of Γ\h∗ is 0, then {α, β} ∈ H1(Γ\h∗,Z) iff β ∈ Γα.

Definition 1.2. Let Γ ⊆ PSL2(R). We call an element g ∈ Γ

• elliptic if it has a fixed point in h, that is, in the interior of the upper half plane. Such fixed points are called

the elliptic points of h∗. These are the points α with nα = |StabΓ(α)| > 1.

• parabolic if it has a cusp as a fixed point.

Remark 1.3. For elliptic elements g ∈ Γ, one can show that the corresponding elliptic points must be a translation of

one of the following:

• i, in which case g is a conjugate (in PSL2(Z)) of S.

• ρ = 1
2 +

√
3

2 i, in which case g is a conjugate (in PSL2(Z)) of ST.

Moreover, such g cover all the elliptic elements of PSL2(Z).

In the parabolic case, the g’s are precisely the conjugates (in PSL2(Z)) of T r, for some r ∈ Z.

We denote by X (Γ) the set of elliptic and parabolic elements of Γ. The preceding remark implies that:

Lemma 1.4. X (Γ) = X (PSL2(Z)) ∩ Γ.

Theorem 1.5. Let α ∈ h∗. The map

φα : Γ → H1(Γ\h∗, Z)

g 7→ {α, gα}
is a surjective group homomorphism which does not depend on the choice of α. The kernel is generated by the commu-

tator Γ′ of Γ and by X (Γ) , that is, the elliptic and parabolic elements of Γ.

Proof. The fact that φα is a group homomorphism follows from (a) and (b) of 1.1:

φα(gh) = {α, ghα} (a)
= {α, gα}+ {gα, ghα} (b)

= {α, gα}+ {α, hα} = φα(g) + φα(h).
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Also from 1.1 it follows that φ = φα is independent of α, since if β ∈ h∗, then for g ∈ Γ,

φα(g) = {α, gα} (a)
= {α, β}+ {β, gβ}+ {gβ, gα} (b)

= φβ(g) + {α, β}+ {β, α} (a)
= φβ(g) + {α, α} = φβ(g).

We denote by α the projection of α ∈ h∗ to Γ\h∗. Let h0 be the complement of PSL2(Z)i ∪ PSL2(Z)ρ in h, and let

D0 = Γ\h∗ − {elliptic points and cusps}, so that h0 = D0.

To prove the remaining assertions, we must use a geometric interpretation of this homomorphism.

Since we proved φ does not depend on α, we can choose α ∈ h0.

We now define a surjective group homomorphism ψα : π1(D0, α)→ Γ by what follows: given a closed loop γ on D0

starting at α, we can lift it uniquely to a (not necessarily closed) path γ on h0 starting at α. 1 The endpoint of such

path β satisfies β = α, so it is β = gα for a uniquely determined g ∈ Γ. Then we define ψα(γ) = g. It is a group

homomorphism since if ψα(γ1) = g1, ψα(γ2) = g2, then a lift of γ = γ1 ? γ2 is γ = γ1 ? (g1 ◦ γ2), and as

γ(1) = (g1 ◦ γ2)(1) = g1(ψα(γ2)α) = g1g2α,

we conclude ψα(γ) = g1g2 = ψα(γ1)ψα(γ2).

Figure 1. A visual description of the map ψα for Γ = PSL2(Z). Note how the path in Γ\h∗ in the

left correspond to the element g = TS ∈ Γ.

The surjectivity of ψα follows since, for any g ∈ Γ, there is a path γ from α to gα in h0 (since elliptic points and

cusps are a discrete set), and then ψα(γ) = g.

Given this description, one can see easily that the composite map

τ : π1(D0, α)
ψα−−→ Γ

φ−→ H1(Γ\h∗, Z)

coincides with the canonical homomorphism of the fundamental group of the surface D0 into the homology group of its

compactification Γ\h∗. This immediately implies that the map φ is surjective. Furthermore, since ψα is also surjective,

1This follows since h0 → D0 is a covering map.
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we may write

Ker (φ) = ψα(Ker (ψα ◦ φ)).

Since H1(Γ\h0, Z) is abelian, τ must factor into the abelianization of π1(D0, α). As π1(D0, α)ab ∼−→ H1(D0, Z), 2

we have

τ : π1(D0, α)→ π1(D0, α)ab ∼−→ H1(D0, Z)→ H1(Γ\h∗, Z).

Since D0 = Γ\h∗ − {elliptic points and cusps}, one can see that the kernel of the last map is generated by small

loops around each elliptic point or cusp. 3 For β ∈ {elliptic points and cusps}, we denote by γβ such a loop.

This discussion shows that Ker (ψ ◦ φ) = π1(D0, α)′ 〈γβ〉 . Since ψ is surjective, this means

Ker (φ) = Γ′ 〈ψ(γβ)〉 .

So now it remains to prove that 〈ψ(γβ)〉 = X (Γ) . For any such β, we can find a unique gβ ∈ PSL2(Z) such that

gβ(β) ∈ {i, ρ, i∞}. Then gβψ(γβ)g−1
β = ψ(gβ ◦ γβ), and since gβ ◦ γβ is a small loop around one of {i, ρ, i∞}, we can

analyze those explicitly and conclude gβψ(γβ)g−1
β is S, TS or T r for some r depending whether gβ(β) is i, ρ or i∞.

This implies

ψ(γβ) ∈ X (PSL2(Z)) ∩ Γ = X (Γ) ,

This shows also that ψ(γβ) fix β, and this, in turn, uniquely determine {ψ(γβ), ψ(γβ)−1}, given that it fixes β, if β is

elliptic. If β is a cusp, we note ψ(γβ) is a conjugate (in PSL2(Z)) of TH , and this, again, uniquely determine ψ(γβ)

together with the fact it fixes β. Finally the parabolic elements of X (Γ) are the conjugates of some T rH that are inside

Γ, for some r ∈ Z, and so they are all generated by 〈ψ(γβ)〉 .

Hence 〈ψ(γβ)〉 = X (Γ) , and we conclude Ker (φ) = Γ′ X (Γ) . �

2. Distinguished Classes

Let J = Γ\PSL2(Z) be the set of right cosets. We define the map

ξ : J → H1(Γ\h∗,R)

by: if j ∈ J and g is any representative of the class j, let

ξ(j) = {g(0), g(i∞)} .
By 1.1(b), this does not depend on the choice of representative g.

Definition 2.1. We define the classes in ξ(J) as above to be the distinguished classes.

Remark 2.2. Note that the distinguished classses are not, in general, integral classes.

2This is called the Hurewicz’s theorem.
3 For a proof of this, one can use the Mayer-Vietoris exact sequence. Around each elliptic or cusp β we take open sets Uβ such that

Uβ are all disjoint, and let U =
⋃
β Uβ , V = Γ\h∗ −

⋃
β{β} so that U ∩ V =

⋃
β(Uβ − {β}). Also U ∩ V has a retraction to

∐
r S

1, where

r is the number of elliptic points and cusps in Γ\h∗. U has the same homology of
∐
r D

2, and V is a deformation retract of D0. Finally,

U ∪ V = Γ\h∗. By the exactness of H1

(∐
r S

1
)
→ H1

(∐
r D

2
)
⊕H1

(
D0
)
→ H1 (Γ\h∗) , and since H1

(∐
r D

2
)

= 0 we get that the kernel

we want is simply Im
(∐

r S
1 → H1

(
D0
))
.
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