
KUGA-SATAKE CONSTRUCTION

MURILO CORATO ZANARELLA

Abstract. We explain the Kuga-Satake construction for Hodge structures of K3-type and how

it can be used to derive the Weil and Tate conjectures for K3 surfaces defined over Q.

Contents

1. K3 surfaces 1
2. Hodge and Tate structures 2
2.1. Hodge structures 2
2.2. Tate structures 5
2.3. The case of projective varieties 6
2.4. Hodge, Tate and Weil conjectures 6

3. Kuga-Satake 7
3.1. Hodge structure 8
3.2. Tate structure 9
3.3. Kuga-Satake abelian variety 10

4. Tate and Weil conjectures for K3 surfaces 11

We explain the Kuga-Satake construction that associates an isogeny class of abelian varieties

to certain rational Hodges structures, such as the ones coming from K3 surfaces. We show how

this construction can be used to transport the validity of the Weil conjecture and partial validity

of the Tate conjecture from abelian varieties to their validity to K3 surfaces defined over Q.

This idea has been used by Deligne to prove the Weil conjecture for K3 surfaces over finite fields

prior to his proof for all varieties. More recently, in 2013, the Tate conjecture for K3 surfaces over

finite fields of odd characteristic has been proven by Madapusi Pera also using this construction.

1. K3 surfaces

We begin by recalling the definition of K3 surfaces. The only particular property of K3 surfaces

that will be used is its Hodge diamond.
1
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Definition 1.1. A K3 surface is a smooth projective algebraic variety of dimension 2 with trivial

canonical bundle K and trivial first homology.

Proposition 1.2. Let X be a K3 surface. Then its Hodge diamond is

1

0 0

1 20 1

0 0

1

Proof. The zeroes follow from the triviality of the first homology together with Poincaré duality.

Since X is connected, we clearly have h0,0 = 1. Since K = Ω2(X) is trivial, we have that

h2,0 = 1. Now, by Serre duality, we conclude that h0,2 = h2,2 = 1. In particular, χ(OX) = 2.

Although we will not need it here, h1,1 can be computed by the Noether’s formula: we have

χ(OX) =
K.K + χ
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where χ is the topological Euler characteristic. Since K is trivial, we conclude that χ = 24 and

hence that h1,1 = 20. �

2. Hodge and Tate structures

2.1. Hodge structures. We construct a category of Hodge structures. These are usually called

pure Hodge structures in the literature.

Definition 2.1. A Hodge structure of weight k ∈ Z is a Q-vector space V with a decomposition

VC =
⊕

p+q=k

V p,q, and V p,q = V q,p

where p, q ∈ Z.

Proposition 2.2. For a Q-vector space V and an integer k, there is a bijection algebraic representations h : C× → GL(VR)

with h(t) = tk for t ∈ R×

←→
 Hodge structures on V

of weight k


given by

h 7−→ (V p,q := {v ∈ VC : h(z)v = zpzqv}).
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Proof. We first prove that given such algebraic representation h, we have V =
⊕

p+q=k V
p,q. This

is where we use that h is algebraic: since C× ⊆ GL2(R) by z 7→

 x −y

y x

 , h(z) is a matrix

whose coefficients are polynomials in x, y, (x2 +y2)−1 = (zz)−1. So if λ is an irreducible character

of h, we must have λ(z) = zpzq for some p, q ∈ Z, and since λ(t) = tk for t ∈ R×, we must have

p + q = k. Now if follows that V =
⊕

p+q=k V
p,q. That V q,p = V p,q follows at once from the fact

that h is a real representation.

Conversely, given a Hodge structure V =
⊕

p+q=k V
p,q, we define h by setting h(z)v = zpzqv

for v ∈ V p,q. This is well defined since, for v ∈ VR, we have

h(z)v =
∑

p+q=k

zpzqvp,q =
∑

p+q=k

zqzpvq,p = h(z)v

and is clearly algebraic and satisfies h(t) = tk for t ∈ R×. �

Definition 2.3. A morphism of Hodge structures of same weight k given by algebraic represen-

tations (V, hV ), (W,hW ) is an intertwining operator between the representations hV and hW .

The above bijection can be made an equivalence of categories if we let the morphisms on the

right hand side be maps of Q vector spaces f : V →W satisfying f(V p,q) ⊆W p,q.

We can also endow the category of Hodge structures with tensor products and duals by using

their definition with algebraic representations.

Concretely, for Hodge structures V and W of weights kV and kW we have the Hodge structure

V ⊗W of weight kV + kW given by

(V ⊗W )p,q =
∑

(p1,q1)+(p2,q2)=(p,q)

V p1,q1 ⊗W p2,q2

and the Hodge structure V ∗ of weight −kV given by

(V ∗)p,q = (V −p,−q)∗.

Example 2.4. We consider the Hodge structure Q(n) given by

Q(n)−n,−n = Q, Q(n)p,q = 0 for (p, q) 6= (−n,−n).
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It is a Hodge structure of weight −2n. For a Hodge structure V of weight k, we consider its Tate

twists V (n) := V ⊗Q(n) of weight k − 2n, so that

V (n)p,q = V p+n,q+n.

Definition 2.5. The Hodge classes Hdg(V, h) of a Hodge structure (V, h) are defined by

Hdg(V, h) :=

 0 if 2 - k,

V ∩ V p,p if k = 2p.

Proposition 2.6. For Hodge structures V and W of same weight k, we have

HomHdg(V,W ) = Hdg(V ∗ ⊗W ).

Proof. Consider a linear map f : V →W. It defines a Hodge class in V ∗ ⊗W iff

f(v) = hW (z)f(hV (z)−1v) =: ((h∗V (z)⊗ hw(z))f)(v)

for all v ∈ VR and z ∈ C×. It defines a Hodge morphism iff f(hV (z)v) = hW (z)f(v) for all v ∈ VR

and z ∈ C×. Now the claim is clear since both conditions are the same up to changing v to

h(z)v. �

Definition 2.7. A polarization on a Hodge structure (V, h) is a non-degenerate morphism of

Hodge structures Ψ: V ⊗ V → Q(−k) such that ΨR(v, h(i)w) is symmetric and positive definite.

It can be seen as an isomorphism V
∼−→ V ∗(−k) or as a class in Hdg(V ∗ ⊗ V ∗).

Lemma 2.8. A non-degenerate bilinear map Ψ: V ⊗ V → Q(−k) is a polarization iff

(1) Ψ(v, w) = (−1)kΨ(w, v),

(2) ΨC(v, w) = 0 if v ∈ V p,q and w ∈ V p′,q′ with p 6= q′,

(3) iq−pΨC(v, v) > 0 for v ∈ V p,q nonzero.

Proof. (⇒) : For (1), since Ψ is a morphism of Hodge structures, we have

(ii)kΨ(v, w) = ΨR(h(i)v, h(i)w) = ΨR(w, h(i)2v) = Ψ(w, h(−1)v) = (−1)kΨ(w, v),

where the second equality uses that ΨR(v, h(i)w) is symmetric.

For (2), note that

(zz)kΨC(v, w) = ΨC(h(z)v, h(z)w) = ΨC(zpzqv, zp
′
zq
′
w) = zp+p′zq+q′ΨC(v, w),
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and so ΨC(v, w) can be nonzero only if p+ p′ = q + q′ = k.

For (3), let v ∈ V p,q. From the positive definiteness of ΨR(x, h(i)y), we have

0 <ΨR((v + v), h(i)(v + v))

=ΨC(v, h(i)v) + ΨC(v, h(i)v) + ΨC(v, h(i)v) + ΨC(v, h(i)v)

=2iq−pΨC(v, v) + ip−qΨC(v, v) + iq−pΨC(v, v),

where the last equality used that ΨC(x, h(i)y) is symmetric. If p 6= q, then by (2) this is simply

2iq−pΨC(v, v) and the claim follows. If p = q, then this is 4 ·ΨC(v, v), and the claim also follows.

(⇐) : First we prove Ψ is a morphism of Hodge structures. For this, it suffices to prove that

Ψ(h(z)v, h(z)w)
?
= (zz)kΨ(v, w) for v ∈ V p,q and w ∈ V p′,q′ . If p 6= q′, this is true since both are

0 by (2). If p = q′, this means that p+ p′ = q + q′ = k, and then

ΨC(h(z)v, h(z)w) = ΨC(zpzqv, zp
′
zq
′
w) = zp+p′zq+q′ΨC(v, w) = (zz)kΨC(v, w),

Now by (1) and using that Ψ is a morphism of Hodge structures, we have, for v, w ∈ VR,

ΨR(v, h(i)w) = (ii)kΨR(h(−i)v, w) = (−1)kΨR(w, h(−i)v) = ΨR(w, h(i)v) = ΨR(w, h(i)v).

Let v ∈ VR and write v =
∑

p≤k/2 v
p where vp ∈ (V p,q + V q,p) ∩ VR. By (2), we have

ΨR(v, h(i)v) =
∑

p≤k/2 ΨR(vp, h(i)vp). Now choose wp ∈ V p,q such that vp = wp + wp. Now

the reverse of the computation done for part (3) above gives us that Ψ(v, h(i)v) > 0. �

2.2. Tate structures. In a similar way, we consider a category of Tate structures.

Definition 2.9. A Tate structure is a Q vector space V with a continuous action of GQ :=

Gal
(
Q/Q

)
on VQl

.

We can also endow the category of Tate structures with tensor products and duals in a natural

way.

Example 2.10. We consider the Tate structure Q(n) with vector space Q and Galois action χn
l

where χl is the l-adic cyclotomic character. We also let V (n) := V ⊗Q(n) for any Tate structure

V.

Definition 2.11. We say a Tate structure V has (Tate) weight n if for any Frobenius element σ

at p 6= l, σ−1 acts on VQl
by a characteristic polynomial with rational coefficients whose roots have

complex absolute value pn/2.
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Remark 2.12. Note that if we have two Tate structures V ⊆ W, then if W has weight n, then so

does V.

Tate weights also behave well under Tate twists:

Proposition 2.13. If V is a Tate structure with weight n, then V (m) has weight n− 2m.

Proof. Under the cyclotomic character χl, a Frobenius at p 6= l goes to multiplication by p. So if

σ is a Frobenius element at p, then σ−1 acts on V (m) as σ−1χl(σ)−m = p−mσ−1 and the claim

follows. �

2.3. The case of projective varieties. If X is a smooth complex projective variety, we define

a bilinear form

Ψ: Hn−k (X,C)⊗Hn−k (X,C)→ C

by Ψ(ξ, η) =
∫
X(C)

ξ ∧ η ∧ ωk where ω is a Kähler class.

Proposition 2.14. The bilinear form (−1)(
n−k

2 )Ψ(v, w) defines a polarization of Hk (X,Q) .

Proof. We use Lemma 2.8. That Ψ is non-degenerate and that (1) and (2) hold is clear. (3) follows

from the Hodge-Riemann bilinear relations together with the Lefschetz decomposition: The Hodge-

Riemann bilinear relations say that for ξ ∈ P p,q(X,C) a primitive class with k = p + q, we have

that iq−p(−1)(
n−k

2 )Ψ(ξ, ξ) > 0. By the Lefschetz decomposition, we can decompose

Hn−k (X,C) =
⊕
m

LmPn−k−2m =
⊕
m

Lm

 ⊕
p+q=n−k−2m

P p,q

 =
⊕

p+q=n−k

⊕
m

LmP p−m,q−m,

and since Ψ(ξ, η) = Ψ(Lkξ, Lkη) and (q−m)− (p−m) = q− p, we have iq−p(−1)(
n−k

2 )Ψ(ξ, ξ) > 0

for all η ∈ Hp,q (X,Q) . �

Hence V := Hk (X,Q) carries a natural polarized Hodge structure. Moreover, if X is defined

over Q, V also has a natural Tate structure, since there is a comparison isomorphism VQl
'

Hn−k
ét (X,Ql) , to étale cohomology, which caries a Galois action of GQ.

2.4. Hodge, Tate and Weil conjectures. For a smooth complex projective variety X, we define

algebraic cycles to be formal linear combinations of subvarieties, that is, of the form

∑
i

ciYi
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for some finite collection Yi ⊆ X of subvarieties and ci ∈ Q.

For a subvariety Y ⊆ X of codimension i, we can define a cohomology class [Y ] ∈ H2i (X,Q)

to be the dual of its homology class. We extend this to algebraic cycles by linearity. We call

cohomology classes of the form
∑

i ci[Yi] algebraic.

Hodge structures and Tate structures were defined to contextualize the following important

conjectures on algebraic geometry.

Conjecture 2.15 (Hodge). Let X be a smooth complex projective variety. Then all classes in

Hdg(H2i (X,Q)) are algebraic.

Conjecture 2.16 (Tate). Let X be a smooth projective variety defined over Q. Then all classes

in H2i (X,Ql(i))
GQ are algebraic.

Conjecture 2.17 (Weil). Let X be a smooth projective variety defined over Q. Then the Tate

structure on Hi (X,Q) has weight i.

In fact, the Tate and Weil conjectures are defined in more generality for varieties over finite

fields Fq. The Weil conjectures were proven in full generality by Deligne in 1974.

The Hodge conjecture is known for i = 1 and i = dimX − 1 by Lefschetz theorem on (1, 1)-

classes.

3. Kuga-Satake

We assume from now on that (V, h,Ψ) is a Hodge structure of K3-type, that is, a polarized

Hodge structure of weight 2 with dimV 2,0 = 1. We assume also that V carries a Tate structure.

Let Q : V → Q denote the non-degenerate quadratic form on V induced by Ψ. Since Ψ is a

polarization, it is negative in V 2,0 ⊕ V 0,2 and positive in V 1,1, and so has index (n− 2, 2), where

n = dimV. We will later apply this to V = H2 (X,Q) for X a K3 surface.

To (V,Q), one associate its Clifford algebra C(Q). This is a 2n dimensional associative algebra

with the following universal property: for a linear map f : V → A to an algebra A such that

f(v)2 = Q(v), there is a unique morphism of algebras f̃ : C(Q)→ A such that f is V → C(Q)
f̃−→ A.

It can be defined as the free algebra generated by V,modulo the sub-algebra generated by vv−Q(v).

If e1, . . . , en is a basis of V such that Q is
∑
diX

2
i for some di ∈ Q, then C(Q) is an algebra

generated by ei such that e2
i = di and eiej + ejei = 0 for i 6= j. It has a sub-algebra given by
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the even Clifford algebra C+(Q) of dimension 2n−1 spanned by the ea1
1 · · · ean

n with 2 | a1 + · · · an.

Note that C+(Q) does not depend on the choice of basis.

3.1. Hodge structure. We now describe a weight 1 Hodge structure on C(Q) from h. Write

VR = V1 ⊕ V2 with V1 ⊗ C = V 1,1 and V2 ⊗ C = V 2,0 ⊕ V 0,2. Such decomposition is orthogonal

with respect to Q.

Lemma 3.1. Tthere is a canonical J ∈ C+(Q)R with J2 = −1.

Proof. Choose a basis f1, f2 of V2 such that V 2,0 = 〈f1 + if2〉 and Q(f1) = −1. This can be

done since Q is negative definite on V2. Since Q(V 2,0) = 0, we have Q(f1 + if2) = 0, hence

Q(f2) = −1 and f1, f2 are orthogonal. This means that Q(xf1 + yf2) = −(x2 + y2). Hence

Q(f1 + f2) = Q(f1 − f2), that is, f1f2 + f2f1 = 0.

Now let J = f1f2. Then J2 = f1f2f1f2 = −f2
1 f

2
2 = −Q(f1)Q(f2) = −1. One can check that J

does not depend on the choice of f1 and f2. �

Definition 3.2. The weight 1 Hodge structure (C+(Q), hs) is given by

hs : C× → GL(C+(Q)R), hs(a+ bi) = a+ bJ.

We now give (C+(Q), hs) a polarization. Write ea := ea1
1 · · · ean

n for a = (a1, . . . , an). Also,

denote by ι the anti-involution given by ι(ea) = ean
n · · · e

a1
1 .

Lemma 3.3. We have

Tr(ea) =

 0 if a 6= 0,

2n−1 if a = 0.

In particular, Tr(x) = Tr(ι(x)). Moreover,

Tr(ι(ea)eb) =

 0 if a 6= b,

2n−1da1
1 · · · dan

n if a = b.

Proof. Considering the matrix of left multiplication of ea, note that eaeb = λbe
c for some scalar

λb, and c ≡ a + b mod 2. As Tr(ea) =
∑

b=c λb, the first claim follow since we have b = c if and

only if a = 0, and when a = 0 we have λb = 1.

Since ι(ea) = ±ea, we have ι(ea)eb = λec for some scalar λ and c ≡ a + b mod 2. By the first

part, this is nonzero only if c = 0, that is, if a = b. In this case, we have ι(ea)ea = da1
1 · · · dan

n , and

so the claim follows from the first part. �
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Recall that Q has signature (n− 2, 2). So we may assume that d1, d2 < 0 and d3, . . . , dn > 0.

Proposition 3.4. We have that

E : C+(Q)× C+(Q)→ Q, E(v, w) := −Tr(Jι(v)w)

defines a polarization of (C+(Q), hs).

Proof. As J = f1f2 = −f2f1, we have ι(J) = f2f1 = −J. Hence

E(hs(z)x, hs(z)y) = −Tr(Jι((a+ bJ)x)(a+ bJ)y) = −Tr(Jι(x)(a2 + b2)y) = zzE(x, y).

For the symmetry of E(x, hs(i)y), we have

E(x, hs(i)y) = −Tr(Jι(x)Jy) = −Tr(ι(y)(−J)x(−J)) = −Tr(Jι(y)hs(i)x) = E(y, hs(i)x).

Now we prove it is positive definite. As fi ∈ V2, we write fi = c1i e1 + c2i e2. Then f1f2 +f2f1 = 0

amounts to d1c
1
1c

1
2 + d2c

2
1c

2
2 = 0 and thus J = (c11c

2
2 − c21c12)e1e2 =: ce1e2. Note that the scalar c is

noznero, as J 6= 0. So, writing x =
∑

i e
ai , with ai = e

ai,1

1 . . . e
ai,n
n , we have

E(x, hs(i)x) = −Tr(Jι(x)Jx) = −
∑
i

∑
j

Tr(ι(eai)JeajJ)

By the first part of Lemma 3.3, the only nonzero contribution is for i = j, and since ι(x)ei =

(−1)aieiι(x), we have

E(x, hs(i)x) = −
∑
i

c2Tr(e1e2ι(e
ai)e1e2e

ai) =
∑
i

c2(−1)ai,1+ai,2d1d2Tr(ι(eai)eai).

By the second part of Lemma 3.3, this is

E(x, hs(i)x) = c2d1d2

∑
i

(−d1)ai,1(−d2)ai,2d
ai,3

3 · · · dai,n
n .

which is > 0 if x 6= 0 since each summand is > 0, as d1, d2 < 0 and d3, . . . , dn > 0. �

3.2. Tate structure. We also note that if V is a Tate structure, then C+(Q) carries a natural

Tate structure coming from V. We define it by σ(ea) := σ(ea1
1 ) · · ·σ(ean

n ) and extended linearly to

C+(Q)Ql
. To see that this is well defined, let A be the free algebra generated by e1, . . . , en and A′

the sub-algebra generated by vv−Q(v) for v ∈ V, so that C(Q) = A/A′. To define a Galois action

on C(Q)Ql
, it suffices to define it on AQl

and to prove that A′Ql
is an invariant subspace.
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We have σ(vv−Q(v)) = σ(v)σ(v)−σ(Q(v)) ≡ Q(σ(v))−σ(Q(v)) mod A′Ql
and since Q(σ(v)) =

σ(Q(v)), we conclude that σ(vv −Q(v)) ∈ A′Ql
. So this is a well defined action on C(Q).

Now it is clear that this action also defines an action on C+(Q)Ql
, and thus a Tate structure on

C+(Q).

3.3. Kuga-Satake abelian variety. The polarized weight 1 Hodge structure (C+(Q), hs, E)

determines an isogeny class of abelian varieties: consider the dual vector space of C+(Q)1,0

W :=
(
C+(Q)1,0

)∗
and we let Γ be a free Z-module with Γ⊗Q = (C+(Q))

∗
. Then the projection Γ ⊆ (C+(Q))

∗
C →W

is a lattice of W. The quotient is an abelian variety AΓ with polarization EΓ determined by E.

Definition 3.5. We call the isogeny class of abelian varieties defined by AΓ as above the Kuga-

Satake isogeny class correspondent to V. If V has an integer structure, the lattice Γ can be chosen

canonically, and then the construction defines an abelian variety from V, denoted by KS(X).

Proposition 3.6. There is a natural isomorphism of polarized weight one Hodge and Tate struc-

tures

(H1 (AΓ,Q) , EΓ) ' (C+(Q), hs, E).

Proposition 3.7. Given (V, h,Ψ), there is a morphism V (1) ↪→ End(C+(Q)) of Hodge and Tate

structures depending only on an element v0 ∈ V with Q(v0) 6= 0.

Proof. Consider the map V (1) ↪→ End(C+(Q)), given by v 7→ fv = (w 7→ v · w · v0). It is injective

since choosing an invertible element v1 of C+(Q), we have fv(v1 · v0) = Q(v0)(v · v1), and so fv

determines v.

We prove this is a morphism of Hodge structures, that is, that

f(zz)−1h(z)v(w)
?
= hs(z)fv(hs(z)

−1w).

Let z = a+ bi. We want to prove

(a2 + b2)−1h(z)vwv0
?
= (a+ bJ)v(a+ bJ)−1wv0.

So it suffices to prove

h(z)v
?
= (a+ bJ)v(a− bJ).
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If v ∈ V1, then v commutes with J and h(z)v = (a2 + b2), so this is true. If v ∈ V2, it suffices

to consider v = fi. For v = f1, the right hand side is (a2 − b2)f1 − 2abf2 and for v = f2 it is

2abf1 + (a2 − b2)f2. Now, as f1 + if2 ∈ V 2,0, we have

h(z)(f1 + if2) = z2(f1 + if2) = ((a2 − b2)f1 − 2abf2) + i(2abf1 + (a2 − b2)f2),

which amounts to the two equalities we need by separating the real and imaginary parts. �

4. Tate and Weil conjectures for K3 surfaces

The above morphism of Hodge structures allows us to relate the Tate and Weil conjectures of

K3 surfaces to the ones of endomorphism of abelian varieties.

The Weil conjecture for abelian varieties, and hence also for the endomorphism of abelian

varieties, was proven by Weil in 1948. The Tate conjecture for endomorphism of abelian varieties

is a deep result of Faltings from 1983.

Theorem 4.1. The Tate and Weil conjectures are true for K3 surfaces defined over Q.

Proof. Let X be a K3 surface defined over Q. The two conjectures for H0 (X,Q) and H4 (X,Q)

are trivial. Since H1 (X,Q) = H3 (X,Q) = 0, it suffices to consider V := H2 (X,Q) .

Since V has an integral structure given by H2 (X,Z) , we may consider its Kuga-Satake abelian

variety A := KS(X). By Proposition 3.6 and Proposition 3.7, we have a morphism of Hodge and

Tate structures V (1)
ϕ
↪−→ End(H1 (A,Q)).

Since the Weil conjecture is true for H1 (A,Q) , it is also true for its endomorphism space. Hence

the right hand side has weight 0 as a Tate structure and so V (1) also has weight 0 by Remark 2.12.

Hence V = H2 (X,Q) has weight 2, by Proposition 2.13, and so its Weil conjecture is true.

For the Tate conjecture, let ξ ∈ H2 (X,Ql(1))
GQ = VQl

(1)GQ be a Galois equivariant element.

Since the Tate conjecture is true for H1 (A,Q) , ϕ(ξ) is induced by a self-isogeny of A. Hence

ϕ(ξ) ∈ End(H1 (A,Ql))
0,0 and, since ϕ is an injective morphism of Hodge structures, we must also

have ξ ∈ H2 (X,Ql) (1)0,0 = H2 (X,Ql)
1,1
. As the Hodge conjecture is known for divisors, ξ is the

class induced by a divisor D with Ql coefficients. By the Galois equivariance, such divisor can be

found with Q coefficients. �

I pledge my honor that this paper represents my own work in accordance with University

regulations.
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