KUGA-SATAKE CONSTRUCTION

MURILO CORATO ZANARELLA

AssTrACT. We explain the Kuga-Satake construction for Hodge structures of K3-type and how

it can be used to derive the Weil and Tate conjectures for K3 surfaces defined over Q.
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We explain the Kuga-Satake construction that associates an isogeny class of abelian varieties
to certain rational Hodges structures, such as the ones coming from K3 surfaces. We show how
this construction can be used to transport the validity of the Weil conjecture and partial validity
of the Tate conjecture from abelian varieties to their validity to K3 surfaces defined over Q.

This idea has been used by Deligne to prove the Weil conjecture for K3 surfaces over finite fields
prior to his proof for all varieties. More recently, in 2013, the Tate conjecture for K3 surfaces over

finite fields of odd characteristic has been proven by Madapusi Pera also using this construction.

1. K3 SURFACES

We begin by recalling the definition of K3 surfaces. The only particular property of K3 surfaces

that will be used is its Hodge diamond.
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Definition 1.1. A K3 surface is a smooth projective algebraic variety of dimension 2 with trivial

canonical bundle K and trivial first homology.

Proposition 1.2. Let X be a K3 surface. Then its Hodge diamond is

1
0 0
1 20 1
0 0
1

Proof. The zeroes follow from the triviality of the first homology together with Poincaré duality.
Since X is connected, we clearly have h%? = 1. Since K = Q2(X) is trivial, we have that
h?% = 1. Now, by Serre duality, we conclude that h%? = h?? = 1. In particular, x(Ox) = 2.

Although we will not need it here, h*! can be computed by the Noether’s formula: we have

KK+ x

x(Ox) = 12

where y is the topological Euler characteristic. Since K is trivial, we conclude that x = 24 and

hence that A1 = 20. O

2. HODGE AND TATE STRUCTURES

2.1. Hodge structures. We construct a category of Hodge structures. These are usually called

pure Hodge structures in the literature.
Definition 2.1. A Hodge structure of weight k € Z is a Q-vector space V with a decomposition

Vo= @ VP9 and Vi =V9r
p+q=k

where p, g € Z.

Proposition 2.2. For a Q-vector space V and an integer k, there is a bijection

algebraic representations h: C* — GL(Vg) Hodge structures on 'V
—

with h(t) = t* for t € RX of weight k

given by
h— (VP9 :={v € Vg: h(z)v = 2PZ%}).
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Proof. We first prove that given such algebraic representation h, we have V = EBP T VP4, This

. . L T Y . .

is where we use that h is algebraic: since C* C GLy(R) by z — , h(2) is a matrix
y

whose coefficients are polynomials in z, y, (22 +%?)~! = (22)~!. So if A is an irreducible character
of h, we must have \(z) = 2Pz7 for some p,q € Z, and since \(t) = t* for t € R*, we must have
p+ q = k. Now if follows that V = ®p+q:k VP4, That V4P = VP4 follows at once from the fact
that h is a real representation.

Conversely, given a Hodge structure V = @p_HFk VP4 we define h by setting h(z)v = 2PZ%

for v € VP4, This is well defined since, for v € Vg, we have

h(z)v = Z pEdypd — Z LIFPYTP = (z)v

p+q=k p+q=k

and is clearly algebraic and satisfies h(t) = t* for t € RX. O

Definition 2.3. A morphism of Hodge structures of same weight k given by algebraic represen-

tations (V, hy ), (W, hy ) is an intertwining operator between the representations hy and hyy.

The above bijection can be made an equivalence of categories if we let the morphisms on the
right hand side be maps of Q vector spaces f: V — W satistying f(VP?) C WP,

We can also endow the category of Hodge structures with tensor products and duals by using
their definition with algebraic representations.

Concretely, for Hodge structures V and W of weights ky and ky we have the Hodge structure
V @ W of weight ky + kyw given by

(Vo W)Pt = Z VPLa @ JP2i42
(P1,01)+(P2,92)=(p,9)

and the Hodge structure V* of weight —ky given by
(Ve = (oo,
Ezample 2.4. We consider the Hodge structure Q(n) given by

Q(n)™™ ™" =Q, Q(n)"* =0 for (p,q) # (—=n,—n).
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It is a Hodge structure of weight —2n. For a Hodge structure V' of weight k, we consider its Tate

twists V(n) :=V ® Q(n) of weight k — 2n, so that
V(n)nq — Vp-i-n,q-i-n.
Definition 2.5. The Hodge classes Hdg(V, h) of a Hodge structure (V) h) are defined by

0 if 21k,
VAver if k=2p.

Hdg(V, h) ==

Proposition 2.6. For Hodge structures V. and W of same weight k, we have
Hompqa, (V, W) = Hdg(V* @ W).
Proof. Consider a linear map f: V' — W. It defines a Hodge class in V* @ W iff

F@) = hw (2) f(hv (2) ™ ) = ((hy(2) ® hu(2)) ) (v)

for all v € Vg and z € C*. It defines a Hodge morphism iff f(hy (2)v) = hw(2)f(v) for all v € Vg
and z € C*. Now the claim is clear since both conditions are the same up to changing v to

h(z)v. O

Definition 2.7. A polarization on a Hodge structure (V,h) is a non-degenerate morphism of
Hodge structures U: V ® V. — Q(—k) such that Ur(v, h(i)w) is symmetric and positive definite.

It can be seen as an isomorphism V =5 V*(—k) or as a class in Hdg(V* @ V*).

Lemma 2.8. A non-degenerate bilinear map V: V@V — Q(—k) is a polarization iff
(1) \IJ(vvw) = (_1)k\1/(w7v)7
(2) Ue(v,w) =0 ifve VP andw e VP! with p # ¢,

(3) i9PUc(v,0) > 0 for v € VP nonzero.
Proof. (=) : For (1), since ¥ is a morphism of Hodge structures, we have
(i3) W (v, w) = Wgr(h(i)v, h(i)w) = Tgr(w, h(i)?v) = T(w, h(—1)v) = (=1) T (w,v),

where the second equality uses that ¥g (v, h(i)w) is symmetric.

For (2), note that

(22)" W (v, w) = Ve (h(2)v, h(z)w) = W (P20, 27 29 w) = 2P P 2079 W (v, w),
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and so ¥ (v, w) can be nonzero only if p+p' =g+ ¢ = k.
For (3), let v € V4. From the positive definiteness of Wg(z, h(i)y), we have
0 <Ur((v+7),h(i)(v+71))
:\I’C(U7 h(l)’l)) + \IJ(C(vv h(l)@) + \I’C(@7 h@)”) + \IJC(Ev h(l)@)
=2{1"PU¢c(v,0) + P79 (v,v) + i1 PP (T, ),
where the last equality used that U¢(z, h(i)y) is symmetric. If p # ¢, then by (2) this is simply
2{9PU¢(v,7) and the claim follows. If p = g, then this is 4 - U¢(v,v), and the claim also follows.
(<) : First we prove ¥ is a morphism of Hodge structures. For this, it suffices to prove that
U(h(z)v, h(z)w) Z (22)*W (v, w) for v € VP4 and w € VP4 If p # ¢, this is true since both are

0 by (2). If p = ¢/, this means that p+ p’ = ¢+ ¢’ =k, and then
Ue(h(z)v, h(z)w) = e (P20, 27 20 w) = zp+p/2q+ql‘l/@(v,w) = (22)"Wc (v, w),
Now by (1) and using that ¥ is a morphism of Hodge structures, we have, for v, w € Vg,
W (0, h(i)w) = (i) Ws (h(—i), ) = (—1)" W (w, h(~i)0) = g (w, h(i)) = s (w, h(i)v).

Let v € Vg and write v = }° ) o 0P where vP € (VP4 + VOP) N Vg. By (2), we have
Ur(v,h(i)v) = 32 <) 2 Yr(VP, h(i)vP). Now choose wP € VP such that P = wP + wP. Now

the reverse of the computation done for part (3) above gives us that ¥ (v, h(i)v) > 0. O
2.2. Tate structures. In a similar way, we consider a category of Tate structures.

Definition 2.9. A Tate structure is a Q vector space V with a continuous action of Gg :=

Gal (@/Q) on Vy,.

We can also endow the category of Tate structures with tensor products and duals in a natural

way.

Example 2.10. We consider the Tate structure Q(n) with vector space Q and Galois action x}'
where x; is the l-adic cyclotomic character. We also let V(n) := V ® Q(n) for any Tate structure
V.

Definition 2.11. We say a Tate structure V has (Tate) weight n if for any Frobenius element o

at p # 1, 0~ 1 acts on Vg, by a characteristic polynomial with rational coefficients whose roots have

complex absolute value p"/2.
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Remark 2.12. Note that if we have two Tate structures V' C W, then if W has weight n, then so

does V.
Tate weights also behave well under Tate twists:
Proposition 2.13. If V is a Tate structure with weight n, then V(m) has weight n — 2m.

Proof. Under the cyclotomic character y;, a Frobenius at p # [ goes to multiplication by p. So if

m

o is a Frobenius element at p, then o=1 acts on V(m) as o~y (0)™™ = p~"o~! and the claim

follows. 0

2.3. The case of projective varieties. If X is a smooth complex projective variety, we define
a bilinear form

U H"*(X,C)@H"*(X,C) —» C

by ¥(&,n) = fX(C) £ An Aw” where w is a Kéhler class.
Proposition 2.14. The bilinear form (—1)(n5k)\ll(v,w) defines a polarization of H* (X, Q).

Proof. We use That ¥ is non-degenerate and that (1) and (2) hold is clear. (3) follows
from the Hodge-Riemann bilinear relations together with the Lefschetz decomposition: The Hodge-
Riemann bilinear relations say that for £ € PP4(X,C) a primitive class with k = p + ¢, we have

that iq_p(—l)(n;k)\ll(f,g) > 0. By the Lefschetz decomposition, we can decompose
ank (X, (C) _ @menfkfﬁn _ @Lm @ pra| — @ @mepfm,qu’
m m p+g=n—k—2m p+g=n—k m
and since U (¢, n) = U(LEE, LFn) and (¢ —m) — (p —m) = ¢ — p, we have iqu(—l)(ngk)\lf(ﬁ,g) >0

for all n € H»? (X, Q). O

Hence V := H* (X, Q) carries a natural polarized Hodge structure. Moreover, if X is defined
over Q, V also has a natural Tate structure, since there is a comparison isomorphism Vg, =~

H?;k (X,Qy), to étale cohomology, which caries a Galois action of Gg.

2.4. Hodge, Tate and Weil conjectures. For a smooth complex projective variety X, we define

algebraic cycles to be formal linear combinations of subvarieties, that is, of the form

Z Y
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for some finite collection Y; C X of subvarieties and ¢; € Q.

For a subvariety Y C X of codimension 4, we can define a cohomology class [Y] € H* (X, Q)
to be the dual of its homology class. We extend this to algebraic cycles by linearity. We call
cohomology classes of the form ), ¢;[Y;] algebraic.

Hodge structures and Tate structures were defined to contextualize the following important

conjectures on algebraic geometry.

Conjecture 2.15 (Hodge). Let X be a smooth complex projective variety. Then all classes in

Hdg(H?* (X,Q)) are algebraic.

Conjecture 2.16 (Tate). Let X be a smooth projective variety defined over Q. Then all classes
in H2 (X, Qy(i))9? are algebraic.

Conjecture 2.17 (Weil). Let X be a smooth projective variety defined over Q. Then the Tate
structure on H* (X, Q) has weight .

In fact, the Tate and Weil conjectures are defined in more generality for varieties over finite
fields F,. The Weil conjectures were proven in full generality by Deligne in 1974.
The Hodge conjecture is known for ¢ = 1 and ¢ = dim X — 1 by Lefschetz theorem on (1, 1)-

classes.

3. KUGA-SATAKE

We assume from now on that (V,h, ¥) is a Hodge structure of K3-type, that is, a polarized
Hodge structure of weight 2 with dim V2% = 1. We assume also that V carries a Tate structure.
Let @: V — Q denote the non-degenerate quadratic form on V induced by W. Since ¥ is a
polarization, it is negative in V2 @ V%2 and positive in V1!, and so has index (n — 2,2), where
n = dim V. We will later apply this to V = H? (X, Q) for X a K3 surface.

To (V,Q), one associate its Clifford algebra C(Q). This is a 2" dimensional associative algebra
with the following universal property: for a linear map f: V — A to an algebra A such that
f(v)? = Q(v), there is a unique morphism of algebras f: C(Q) — Asuch that fisV — C(Q) i) A.
It can be defined as the free algebra generated by V, modulo the sub-algebra generated by vv—Q(v).

If e1,...,e, is a basis of V such that Q is Y. d; X? for some d; € Q, then C(Q) is an algebra

generated by e; such that e? = d; and e;e; + eje; = 0 for i # j. It has a sub-algebra given by
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the even Clifford algebra C*(Q) of dimension 2"~! spanned by the ef* - - - e%" with 2 | aj + -+ - ay,.

Note that C*(Q) does not depend on the choice of basis.

3.1. Hodge structure. We now describe a weight 1 Hodge structure on C(Q) from h. Write
Ve =V ® Vo with V; @ C = V! and V5 ® C = V20 @ V%2, Such decomposition is orthogonal

with respect to Q.
Lemma 3.1. Tthere is a canonical J € CT(Q)r with J? = —1.

Proof. Choose a basis fi, f of Vo such that V29 = (f; +ifs) and Q(f1) = —1. This can be
done since @ is negative definite on Va. Since Q(V??) = 0, we have Q(f; + if2) = 0, hence
Q(f2) = —1 and fi, fo are orthogonal. This means that Q(xf; + yf2) = —(2® + y?). Hence
Q(fi + f2) = Q(f1 — f2), that is, fife + fof1 = 0.

Now let J = f1fa. Then J% = fifofifo = —f2f3 = —Q(f1)Q(f2) = —1. One can check that J
does not depend on the choice of fi; and fs. O

Definition 3.2. The weight 1 Hodge structure (C*(Q), hs) is given by
hs: C* = GL(CT(Q)r), hs(a+bi)=a+bJ.

We now give (C*(Q), hs) a polarization. Write e® := e{*---e% for a = (a1,...,a,). Also,

denote by ¢ the anti-involution given by t(e®) = e~ .- €.

Lemma 3.3. We have
0 if a#0,
2n=lif a=

Tr(e?) =
In particular, Tr(x) = Tr(c(z)). Moreover,

0 if a#b,
=14t ... don if a =D

Tr(u(e®)e?) =

Proof. Considering the matrix of left multiplication of %, note that e®e® = \ye¢ for some scalar
Xp, and ¢ = a+b mod 2. As Tr(e*) = >°,__ Ny, the first claim follow since we have b = ¢ if and
only if a = 0, and when a = 0 we have A\, = 1.

Since 1(e?) = +e®, we have 1(e?)e? = Ae® for some scalar A and ¢ = a +b mod 2. By the first
part, this is nonzero only if ¢ = 0, that is, if @ = b. In this case, we have ((e*)e® = dj* ---d%, and

so the claim follows from the first part. O
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Recall that @ has signature (n — 2,2). So we may assume that dy,ds < 0 and d3,...,d, > 0.

Proposition 3.4. We have that
E:CT(Q)x CT(Q) - Q, E(v,w):=—-Tr(Ju(v)w)
defines a polarization of (CT(Q), hs).

Proof. As J = f1fo = —faf1, we have 1(J) = fof1 = —J. Hence
E(hs(2)z, hs(2)y) = =Tr(Ju((a + bT)z)(a + b )y) = ~Tr(Je(z)(a® + b?)y) = 2ZB(x,y).
For the symmetry of E(z, hs(i)y), we have

E(x, hs(1)y) = =Te(Ju(x)Jy) = =Tr(u(y)(=T)x(=T)) = =Tr(Je(y)hs (i) z) = E(y, hs(i)z).

Now we prove it is positive definite. As f; € Va, we write f; = cle; +cZea. Then fifo+ fofi =0
amounts to dicicl + dacic = 0 and thus J = (cic3 — c3cl)erea =: cejea. Note that the scalar c is

i

noznero, as J # 0. So, writing = >, €%, with a; = "' ...en"", we have
E(x, hy(i)x) = —Tr(Ju(z) ZZTr )Je% )

By the first part of the only nonzero contribution is for ¢ = j, and since v(x)e; =

(=1)%e;u(x), we have
E(x,hs(i)x) Zc2Tr (e1eat(e*)ereqe™ Zc 1)* 12 dy doTr(v(e)e®).

By the second part of this is

E(x,ho(i)r) = Pdidy Y (—dy)™* (—dp)™2dg"* - - dion.

i

which is > 0 if  # 0 since each summand is > 0, as d;,ds < 0 and d3,...,d, > 0. O

3.2. Tate structure. We also note that if V is a Tate structure, then C*(Q) carries a natural
Tate structure coming from V. We define it by o(e®) := o(e7*) - o(ef) and extended linearly to
CT(Q)g,- To see that this is well defined, let A be the free algebra generated by ey, ..., e, and A’
the sub-algebra generated by vv — Q(v) for v € V, so that C(Q) = A/A’. To define a Galois action

on C(Q)q,, it suffices to define it on Ag, and to prove that Ag, is an invariant subspace.
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We have 0 (vo—Q(v)) = o(v)o(v)—o(Q(v)) = Q(o(v))—a(Q(v)) mod Ap, and since Q(o(v)) =
o(Q(v)), we conclude that o(vv — Q(v)) € Ap,. So this is a well defined action on C(Q).

Now it is clear that this action also defines an action on C*(Q)q,, and thus a Tate structure on

CHQ).

3.3. Kuga-Satake abelian variety. The polarized weight 1 Hodge structure (C*(Q), hs, E)

determines an isogeny class of abelian varieties: consider the dual vector space of C*(Q)%°

W= (CH(@Q)M°)"

and we let I' be a free Z-module with '®Q = (C*(Q))". Then the projection I C (C*H(Q))z — W

is a lattice of W. The quotient is an abelian variety Ar with polarization Er determined by E.

Definition 3.5. We call the isogeny class of abelian varieties defined by Ar as above the Kuga-
Satake isogeny class correspondent to V. If V' has an integer structure, the lattice I' can be chosen

canonically, and then the construction defines an abelian variety from V, denoted by KS(X).

Proposition 3.6. There is a natural isomorphism of polarized weight one Hodge and Tate struc-

tures

(Hl (AFaQ) 7EF) = (C+(Q)a hSaE)'

Proposition 3.7. Given (V,h, V), there is a morphism V(1) — End(C*(Q)) of Hodge and Tate

structures depending only on an element vg € V' with Q(vy) # 0.

Proof. Consider the map V(1) — End(C*(Q)), given by v+ f, = (w+— v - w - vg). It is injective
since choosing an invertible element vy of CT(Q), we have f,(v1 - v9) = Q(vo)(v - v1), and so f,
determines v.

We prove this is a morphism of Hodge structures, that is, that

?

f(zE)*lh(z)v(w) = hs(z)fv(hs(z)_lw)'
Let z = a + bi. We want to prove
(a® 4+ b*) " h(2)vwry < (a4 bJ)v(a +bJ) twuyp.

So it suffices to prove

h(z)v = (a+ bJ)v(a — bJ).
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If v € Vi, then v commutes with J and h(z)v = (a? + b?), so this is true. If v € V5, it suffices
to consider v = f;. For v = fi, the right hand side is (a® — b?)f; — 2abfs; and for v = fo it is
2abf1 + (a® — b?) fo. Now, as f1 +ifs € V3V, we have

h2)(fr +if2) = 22(fr +if2) = ((a® = %) fr — 2abfs) +i(2abf1 + (a® — b?) f2),

which amounts to the two equalities we need by separating the real and imaginary parts. ([l

4. TATE AND WEIL CONJECTURES FOR K3 SURFACES

The above morphism of Hodge structures allows us to relate the Tate and Weil conjectures of
K3 surfaces to the ones of endomorphism of abelian varieties.

The Weil conjecture for abelian varieties, and hence also for the endomorphism of abelian
varieties, was proven by Weil in 1948. The Tate conjecture for endomorphism of abelian varieties

is a deep result of Faltings from 1983.
Theorem 4.1. The Tate and Weil conjectures are true for K3 surfaces defined over Q.

Proof. Let X be a K3 surface defined over Q. The two conjectures for H (X, Q) and H* (X, Q)
are trivial. Since H! (X, Q) = H? (X, Q) = 0, it suffices to consider V := H? (X, Q).

Since V has an integral structure given by H? (X, Z) , we may consider its Kuga-Satake abelian

variety A := KS(X). By |Proposition 3.6{ and [Proposition 3.7, we have a morphism of Hodge and

Tate structures V(1) 4 End(H! (A4, Q)).
Since the Weil conjecture is true for H! (A, Q) , it is also true for its endomorphism space. Hence

the right hand side has weight 0 as a Tate structure and so V(1) also has weight 0 by [Remark 2.12

Hence V = H? (X, Q) has weight 2, by [Proposition 2.13] and so its Weil conjecture is true.

For the Tate conjecture, let £ € H2 (X, Q;(1))9° = Vg, (1)92 be a Galois equivariant element.
Since the Tate conjecture is true for H* (4,Q), ¢(£) is induced by a self-isogeny of A. Hence
(&) € End(H! (A, Q) and, since ¢ is an injective morphism of Hodge structures, we must also
have £ € H2 (X, Q) (1)°° = H2 (X, Q;)"" . As the Hodge conjecture is known for divisors, ¢ is the
class induced by a divisor D with Q; coefficients. By the Galois equivariance, such divisor can be

found with Q coefficients. O

I pledge my honor that this paper represents my own work in accordance with University

regulations.
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