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Abstract. This note discusses the statement of the Fundamental Lemma, together with the

necessary background on endoscopy.
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1. Introduction

The Fundamental Lemma is a conjectural identity between linear combinations of orbital in-

tegrals of certain pairs (G,H) of reductive groups over a p-adic field. Via the Arthur–Selberg

trace formula, orbital integrals are related to the representation theory of the group, and thus the

Fundamental Lemma amounts to correspondences between the representation theory of the groups

G and H. Very roughly, we may picture these relations as follows

representation theory of G orbital integrals on G

representation theory of H orbital integrals on H

trace formula

Langlands conjectures Fundamental Lemma

trace formula
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The fundamental lemma arises in this way from conjectural relations in the representation

theory, and is in turn used to prove some of these relations. The fundamental lemma is currently

not proved in its full generality, but particular cases have been very important in the theory of

automorphic representations, being critical parts of proofs of results such as the Base Change for

GL2 and the local Langlands conjecture for GLn.

2. Unramified reductive groups

Let F be a p-adic field, that is, either a finite extension of Qp or Fpn((t)) for some n. We will

consider connected reductive algebraic groups G over F.

Recall that G is split if it has a maximal torus T which is isomorphic over F to a product of

Gm. G is quasi-split if it has a Borel subgroup over F.

Definition 2.1. A connected reductive linear algebraic group G is an unramified reductive group

if G is quasi-split and if there is a unramified extension F ′/F such that G×F F ′ is split over F ′.

Recall that in the case that G is split, it is classified by its root datum (X∗, X∗,Φ,Φ
∨) where

X∗, X∗ are the character and cocharacter groups of a maximal torus of G, and Φ ⊆ X∗ and

Φ∨ ⊆ X∗ are the roots and coroots.

If G is split over an unramified extension F ′/F, then we have an action of Gal(F ′/F ) on

G×F F ′, which induces an action on X∗. Since F ′/F is unramified, Gal(F ′/F ) = 〈σ〉 where σ is

the Frobenius automorphism, and we have an induced map σ : X∗ → X∗. Naturally, σ induces a

bijection on Φ.

If furthermore G is quasi-split, then σ takes positive roots to positive roots. This is because a

set of positive roots is determined by a choice of Borel, which is defined over F. So in this case we

get a bijection σ : Φ+ → Φ+.

In short, for an unramified reductive group G, we associated the data (X∗, X∗,Φ,Φ
∨, σ). These

in fact classify such unramified reductive groups:

Theorem 2.2. Unramified reductive groups over F are classified by (X∗, X∗,Φ,Φ
∨, σ), where

(X∗, X∗,Φ,Φ
∨) is a root datum and σ : Φ+ → Φ+ is an automorphism of finite order.

Proof. Let G̃ be the split group over F with the given root datum and B̃ → G̃ a Borel. Then

unramified quasi-split forms of G̃ are classified by H1
(

Gal(Fur/F ),Aut(B̃ → G̃)
)

. That is, they
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are classified by the action of Frobenius σ : Φ+
G → Φ+

G, and the continuity imposes that σ is of

finite order. �

3. Endoscopic groups

Let G be an unramified reductive group over F with classifying data (X∗, X∗,ΦG,Φ
∨

G, σG).

Definition 3.1. An unramified reductive group H over F is an unramified endoscopic group of G

if its classifying data has the form

(X∗, X∗,ΦH ,Φ∨

H , σH)

satisfying the following: there is s ∈ Hom(X∗,C
×) and w ∈ W (ΦG) such that

(a) Φ∨

H = {α ∈ Φ∨

G : s(α) = 1},
(b) σH = w ◦ σG,

(c) σH(s) = s.

Next, we aim to prove that if H is unramified endoscopic of G, then any maximal tori TH of H

is isomorphic to a maximal tori TG of G.

Given a torus T over F, let F ′/F be a finite extension such that T splits over F ′. Then Gal(F ′/F )

acts on T ×F F ′, and hence on X∗(T ), giving a morphism ρ : Gal(F/F ) → Aut(X∗(T )) with finite

image.

Theorem 3.2. A torus T over F is classified by a triple (X∗, X∗, ρ) where ρ : Gal(F/F ) →
Aut(X∗) has finite image.

Moreover, given G an unramified reductive group with classifying data (X∗(T ), X∗(T ),ΦG,Φ
∨

G, σG),

then T embeds over F as a maximal torus in G if and only if the following two conditions hold:

(a) The image of ρ is contained in W (ΦG)⋊ 〈σG〉 .
(b) The composition Gal(F/F )

ρ−→ W (ΦG) ⋊ 〈σG〉 → 〈σG〉 is the same as Gal(F/F ) →
Gal(F ur/F ) → 〈σG〉 where Frobenius is mapped to σG.

Proof. Let T̃ be the split torus with the given root data. Then its forms are classified by

H1
(

Gal(F/F ),Aut(T̃ )
)

= H1
(

Gal(F/F ),Aut(X∗)
)

= Homcont(Gal(F/F ),Aut(X∗)). Here, con-

tinuous means that it factors through a finite extension, and hence that has a finite image.
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For the second part, again let G̃ be the split form of G, and ι : T̃ → G̃ be a maximal torus. Now

the possible T that embed as a maximal torus in G are classified by the preimage of σG in

H1
(

Gal(F/F ),Aut(T̃ → G̃)
)

→ H1
(

Gal(F/F ),Aut(G̃)
)

.

Since we may identify the above map as

H1
(

Gal(F/F ),W (ΦG)⋊Aut(ΦG)
)

→ H1
(

Gal(F/F ),Aut(X∗,ΦG)
)

,

we obtain the description we want. Note that we are using that, since σG preserves positive roots,

the natural map W (ΦG)⋊ 〈σG〉 → Aut(X∗) is injective. �

Now if H is an unramified endoscopic group of G, the above theorem says that the conditions

for a torus to embed maximally onto H are more restrictive than to embed on G. So we have the

following corollary.

Corollary 3.3. Let H be an unramified endoscopic group of G. Then every maximal torus TH of

H is isomorphic to a maximal torus TG of G, and TG can be chosen such that X∗(TG) ≃ X∗(TH)

and X∗(TG) ≃ X∗(TH) as Galois modules.

4. Stable conjugacy

Recall that two elements g1, g2 ∈ G(F ) are called stably conjugate if they are conjugate over F .

We will denote g1 ∼F g2 for F conjugacy and g1 ∼ g2 for stable conjugacy.

We will soon consider summations over stable conjugates modulo F -conjugates, that is, sum-

mations over the set

C(g) := {γ ∈ G(F ) : g ∼ γ}/ ∼F .

Although this will only be used in the computations made in the examples, it is helpful to

investigate the difference between ∼ and ∼F better, and to describe what C(g) is in terms of

Galois cohomology.

Lemma 4.1. Let g ∈ G(F ). Let H = CG(g). Then the set of F -conjugates of g is in bijection

with G(F )/H(F ), and the set of stable conjugates of g is in bijection with (G/H)(F ). Moreover,

we have the following exact sequence of pointed sets

0 → C(g) → H1
(

Gal(F/F ), H(F )
)

→ H1
(

Gal(F/F ), G(F )
)

.
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Proof. The first two bijections are given as follows: consider the maps

G(F )/H(F ) → G(F ) γH(F ) 7→ γgγ−1,

(G/H)(F ) → G(F ) γH(F ) 7→ γgγ−1.

The first map gives the first bijection, and the second map gives a bijection between (G/H)(F )

and stable conjugates of g in G(F ). By definition, (G/H)(F ) is the preimage of G(F ) in the second

map, and thus we have the desired bijection.

Now consider the exact sequence of schemes

0 → H → G → G/H → 0.

Taking Galois cohomology, we obtain the exact sequence of pointed sets

0 → G(F )/H(F ) → (G/H)(F ) → H1
(

Gal(F/F ), H(F )
)

→ H1
(

Gal(F/F ), G(F )
)

.

Since G(F ) acts on the first two terms and acts transitively on the first, it makes sense to consider

the cokernel of the first map: it is the quotient of this action. This cokernel can be identified with

C(g) by the definition of C(g). Thus, we obtain the exact sequence we want

0 → C(g) → H1
(

Gal(F/F ), H(F )
)

→ H1
(

Gal(F/F ), G(F )
)

. �

5. Strongly regular elements

Definition 5.1. For G a reductive group over F, we say that a semisimple element γ ∈ G(F ) is

strongly regular if its centralizer is a maximal torus.

Let γ0 be a fixed strongly regular element of G(F ) with centralizer T, and γ′ ∈ G(F ) a

stable conjugate of γ0. To such a γ′, we will associated an element of the Galois cohomology

H1
(

Gal(F/F ), T (F )
)

as follows: If g ∈ G(F ) is such that γ′ = g−1γ0g and given τ ∈ Gal(F/F ),

then aτ := τ(g)g−1 centralizes γ0. Indeed,

aτγ0 = τ(g)g−1γ0 = τ(g)γ′g−1 = τ(gγ′g−1)τ(g)g−1 = τ(γ0)aτ = γ0aτ .

Thus aτ ∈ T (F ), and this gives a function a : Gal(F/F ) → T (F ). It is a 1-cocycle since

aτσ = τ(σ(g))g−1 = τ(σ(g))τ(g)−1τ(g)g−1 = τ(aσ)aτ .
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We also note that a is also continuous, since the conjugation of γ0 and γ′ happens over some finite

extension of F, that is, g is defined over some finite extension. Hence a ∈ H1
(

Gal(F/F ), T (F )
)

.

Moreover, one can explicitly compute such cohomology group.

Theorem 5.2 (Tate–Nakayama). Let F ′/F be an unramified extension that splits T. Then

H1
(

Gal(F/F ), T (F )
)

≃
{u ∈ X∗ :

∑

τ∈Gal(F ′/F ) τu = 0}
{τv − v : τ ∈ Gal(F ′/F ), v ∈ X∗}

.

Proof. The right hand side can be identified with Ĥ−1(Gal(F/F ), X∗), where Ĥ denotes Tate

cohomology. Now since T splits over F ′ which is unramified over F, by Hilbert 90 and inflation-

restriction, these cohomologies are isomorphic to

H1 (Gal(F ′/F ), T (F ′)) and Ĥ−1(Gal(F ′/F ), X∗).

Note that if E/F, is any extension, then H1 (Gal (E/F ) , E×) = 0 by Hilbert 90, and note that if

E/F is finite unramified, then H1 (Gal (E/F ) , E×) is cyclic of order [E : F ] for all E/F unramified:

this is because 0 → UE → E× val−−→ Z → 0 and because UE has trivial cohomology for i ≥ 1 since

E/F is unramified. So H2 (E/F,E×) ≃ H2 (E/F,Z) , which is cyclic of order [E : F ] if E/F is

cyclic.

Hence, by Tate’s theorem we obtain the isomorphism

Ĥ−1(Gal(F ′/F ), X∗)
∼−→ H1

(

Gal(F ′/F ), (F ′)× ⊗X∗

)

= H1 (Gal(F ′/F ), T (F ′)) ,

which is given by cup product with a generating class of H2 (Gal(F ′/F ), (F ′)×) . �

Now if H is an unramified endoscopic group of G and γ ∈ H(F ) is strongly regular, then its

centralizer TH is isomorphic to some maximal torus TG ⊆ G by the above corollary. Fix such

an isomorphism TH
∼−→ TG. The data for H includes an element s ∈ Hom(X∗,C

×), and since

σH(s) = s, this s in fact factors through the co-invariants of X∗. Thus, from the above description

of H1
(

Gal(F/F ), T (F )
)

, s induces a homomorphism

κ : H1
(

Gal(F/F ), T (F )
)

→ C×.

For γ0, γ
′ ∈ G(F ) stably conjugate, we denote κ(γ0, γ

′) = κ(a) where a ∈ H1
(

Gal(F/F ), T (F )
)

was defined above.

With this preparation, we can finally define the orbital integrals we will be comparing.
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Definition 5.3. Let G be an unramified reductive group over F, and H an unramified endoscopic

group of G. Let γ ∈ H(F ) be strongly regular and TH = CH(γ). Consider an isomorphism TH
∼−→

TG ⊆ G and assume that γ 7→ γ0 ∈ G(F ) where γ0 is also strongly regular. In such case, we say γ

is G-strongly regular. Let KG,KT be hyperspecial maximal compact subgroups of G and TG. We

consider the following combination of orbital integrals

ΛG,H(γ) :=

∣

∣

∣

∣

∣

∏

α∈ΦG

(α(γ0)− 1)

∣

∣

∣

∣

∣

1/2
volT (KT )

volG(KG)

∑

γ′∈C(γ0)

κ(γ0, γ
′)Oγ′(1KG

).

This is called a κ-orbital integral. We also consider the stable orbital integral

Λst
H(γ) :=

∣

∣

∣

∣

∣

∏

α∈ΦH

(α(γ)− 1)

∣

∣

∣

∣

∣

1/2
volT (KT )

volH(KH)

∑

γ′∈C(γ)

Oγ′(1KH
).

Remark 5.4. The value of ΛG,H(γ) actually depends on the choice of TH
∼−→ TG ⊆ G, but only up

to a root of unity. There is a way to define a transfer factor ∆(γ, γ0) so that ∆(γ, γ0)ΛG,H(γ) is

well defined. I will not attempt to define the transfer factor in general, and will implicitly assume

that the choice of isomorphism is such that ∆(γ, γ0) = 1, which is always possible to be done.

6. The fundamental lemma

Conjecture 6.1 (Fundamental Lemma). Let G be an unramified reductive group over F, and H

an unramified endoscopic group of G. Let γ ∈ H(F ) be G-strongly regular. Then

ΛG,H(γ) = Λst
H(γ).

This is part of the more general context of matching. The Transfer Conjecture predicts that

on the same situation above and given f ∈ C∞

c (G(F )), there is fH ∈ C∞

c (H(F )) that does not

depend on γ such that the following two quantities are equal:

ΛG,H(γ, f) :=

∣

∣

∣

∣

∣

∏

α∈ΦG

(α(γ0)− 1)

∣

∣

∣

∣

∣

1/2
volT (KT )

volG(KG)

∑

γ′∈C(γ0)

κ(γ0, γ
′)Oγ′(f),

Λst
H(γ, fH) :=

∣

∣

∣

∣

∣

∏

α∈ΦH

(α(γ)− 1)

∣

∣

∣

∣

∣

1/2
volT (KT )

volH(KH)

∑

γ′∈C(γ)

Oγ′(fH).

In this case, we say that fH matches f. The Fundamental Lemma is the assertion that 1KH
matches

1KG
.
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7. Examples

For concreteness, we will look at some examples of pairs of groups G,H satisfying the hypothesis

of the fundamental lemma, and we will unravel the definitions of the two orbital integrals.

7.1. SL2 and UE(1). First consider G = SL2. Its classifying data if (Z,Z, {±2}, {±1}, 1). Let w

be the nontrivial reflection and s ∈ Hom(Z,C×) given by s(n) = (−1)n. Then ΦH = ∅, and so H

has classifying data given by (Z,Z, ∅, ∅, w), which gives the 1-dimensional torus UE(1) split by an

unramified quadratic extension E = F (
√
ǫ). By the Tate–Nakayama isomorphism,

H1
(

Gal(F/F ), UE(1)
)

≃ {u ∈ Z : u+ wu = 0}
{wv − v : v ∈ Z} =

Z

{−v − v : v ∈ Z} = Z/2Z.

and κ is the the morphism Z/2Z → C× given by κ(n) = (−1)n. The matching of maximal tori is

given by

UE(1) →֒ SL2, γ := a+ b
√
ǫ 7→ γ0 :=





a bǫ

b a





and γ = a+ b
√
ǫ is G-strongly regular when b 6= 0.

Note that H1
(

Gal(F/F ), SL2(F )
)

= 0, since we have an exact sequence 0 → SL2 → GL2
det−−→

GL1 → 0, and by Hilbert 90, GLn has vanishing first cohomology, so we may conclude the vanishing

of the first cohomology of SL2 as the determinant map GL2(F ) → GL1(F ) is surjective. Hence,

C(γ0) ≃ H1
(

Gal(F/F ), UE(1)
)

≃ Z/2Z and so there are two stable conjugacy classes of γ0 modulo

F -conjugacy, namely

γ0 =





a bǫ

b a



 , γ′ :=





a b

bǫ a





Then κ(γ0, γ0) = 1 and κ(γ0, γ
′) = −1. So assuming that the measures are normalized so that

KG,KH ,KT have measure 1, we have

ΛG,H(γ) = ±|γ − γ|1/2(Oγ0
(1KG

)−Oγ′(1KG
))

and

Λst
H(γ) = Oγ(1KH

).

The ± in ΛG,H(γ) is the transfer factor, which we will not specify.

In this particular case, one can prove the fundamental lemma by computing all the above orbital

integrals using Bruhat–Tits trees.
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7.2. Unramified unitary groups. Let E/F be an unramified quadratic extension. We consider

the unitary groups UE(n) = {X ∈ Mn×n(E) : tXX = I}. Its classifying data is (Zn,Zn,Φ,Φ∨, σ)

where Φ = {ei−ej : i 6= j} and σ(ei) = −ei for all i. For H, we take w = 1 and s ∈ Hom(X∗,C×) ≃
(C×)n be given by (1, . . . , 1,−1, . . . ,−1) with n1 terms equal to 1 and n2 terms equal to −1, with

n1 + n2 = n. Now it is easy to see that ΦH = {α ∈ ΦG : s(α) = 1} are precisely the roots of

the form ei − ej with i 6= j and either i, j ≤ n1 or i, j > n1. Thus H = UE(n1) × UE(n2) is the

endoscopic group of G we are considering. Note that H is a subgroup of G.

The stable conjugacy classes of unitary groups are all represented by diagonal elements, so let

T ⊆ H ⊆ G be the diagonal torus, and let γ ∈ T be G-strongly regular. Since T ≃ UE(1)
n, by the

computation using Tate–Nakayama above, we have that

H1
(

Gal(F/F ), T (F )
)

= (Z/2Z)n.

If a = (a1, . . . , an) ∈ (Z/2Z)n, then the character κ acts as κ(a) = (−1)an1+1+···+an1+n2 .

For concreteness, let’s look at the example n1 = n2 = 1. Let γ = diag(γ1, γ2) ∈ T (F ) be a

G-strongly regular element. This means that γ1 6= γ2.

Now we show that C(γ) has order 2. In general, since UE(n) splits over E, using inflation restric-

tion one can prove that H1
(

Gal(F/F ), UE(n)(F )
)

= H1 (Gal(E/F ), UE(n)(E)) . Using cocycles,

we can thus see that

H1
(

Gal(F/F ), UE(n)(F )
)

≃ {A ∈ GLn(E) : A = tA}
{AtA : A ∈ GLn(E)}

,

and so H1
(

Gal(F/F ), UE(1)
)

≃ F×/NmE/FE
× ≃ Z/2Z has representatives 1 and π for an uni-

formizer π on E. The map

(F×/NmE/FE
×)×(F×/NmE/FE

×) = H1
(

Gal(F/F ), UE(1)× UE(1)
)

→ H1
(

Gal(F/F ), UE(2)
)

,

which has kernel C(γ), is given by

(a, b) 7→





a 0

0 b



 .

Explicitly writing the conditions for such matrix to be of the form AtA for A ∈ GLn(E), one can

compute that the elements of the kernel are (1, 1) and (π, π), so that C(γ) has order 2.
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Hence, there are two stable conjugacy classes of γ modulo F -conjugacy, namely

γ =





γ1 0

0 γ2



 , γ′ :=





γ1 + β αβ

αβ γ2 − β



 .

where β = γ2−γ1

π and α ∈ E× is such that αα = π − 1. As one should expect, κ(γ, γ) = 1 and

κ(γ, γ′) = −1.

Again assuming that the measures are normalized such that KG,KH ,KT have measure 1,

putting all the above together we have

ΛG,H(γ) = ±|γ1 − γ2|
|γ1γ2|1/2

(Oγ(1KG
)−Oγ′(1KG

))

and

Λst
H(γ) = Oγ1

(1KUE(1)
)Oγ2

(1KUE(1)
).
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