Regular primes and Bernoulli numbers

Murilo Corato Zanarella

October 18, 2019

Algebraic number theory

A number field K is a finite field extension of \mathbb{Q}. Its ring of integers \mathcal{O}_{K} is the subring of algebraic integers.
\mathcal{O}_{K} usually does not have unique factorization like \mathbb{Z}, but it has unique factorization in prime ideals.

Example

In $K=\mathbb{Q}[\sqrt{-5}]$, we have $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-5}]$ and

$$
(2)=(2,1+\sqrt{-5})^{2},
$$

but $(2,1+\sqrt{-5})$ is not principal.

Class group

Definition

The class group $\mathrm{Cl}(K)$ of K is the set of nonzero ideals of \mathcal{O}_{K} modulo the relation

$$
\mathfrak{a} \sim \mathfrak{b} \quad \text { when } \quad(\alpha) \mathfrak{a}=(\beta) \mathfrak{b} \text { for some } \alpha, \beta \in \mathcal{O}_{K}
$$

and the group operation is multiplication of ideals.

It measures the failure of \mathcal{O}_{K} being a UFD, and is always finite.
We denote $h_{K}=\# \mathrm{Cl}(K)$.

Regular primes

Definition

A prime p is regular if $p \nmid h_{\mathbb{Q}\left[\xi_{p}\right]}$.

Why do we care?

Theorem (Kummer 1849)

If $p>2$ is regular, then $x^{p}+y^{p}=z^{p}$ has no nontrivial solution.

Sketch of proof of case $p \nmid x y z$.

Factor $\left(x^{p}+y^{p}\right)=(x+y)\left(x+\xi_{p} y\right) \cdots\left(x+\xi_{p}^{p-1} y\right)$. Analize gcd of the terms, and prove each one is a p-power. Use that \mathfrak{a}^{p} is principal $\Longrightarrow \mathfrak{a}$ is principal to conclude each term is a principal p-power.

Bernoulli numbers

Definition

$$
\frac{t}{e^{t}-1}=\sum_{n \geq 0} B_{n} \frac{t^{n}}{n!}
$$

Theorem

$$
\zeta(1-n)=-\frac{B_{n}}{n} \quad \text { for } n \geq 1
$$

So really, Bernoulli numbers \longleftrightarrow special values of ζ.

Goal

Theorem (Kummer 1850)
A prime p is regular if and only if it does not divide the numerator of any of the Bernoulli numbers B_{2}, \ldots, B_{p-3}.

Can be seen as an instance of a more general philosophy:
special values of L-functions \longleftrightarrow arithmetic objects

First ingredient: class number formula

Definition

The Dedekind zeta function of a number field K is

$$
\zeta_{K}(s)=\sum_{\mathfrak{a} \subseteq \mathcal{O}_{K}} N(\mathfrak{a})^{-s}=\prod_{\mathfrak{p} \text { prime }}\left(1-N(\mathfrak{p})^{-s}\right)^{-1}
$$

where $N(\mathfrak{a})=\# \mathcal{O}_{K} / \mathfrak{a}$.

It is analytic in $\mathbb{C}-\{1\}$, with a simple pole at 1 , exactly like $\zeta(s)=\zeta_{\mathbb{Q}}(s)$.

First ingredient: class number formula

Theorem (Analytic class number formula)

$$
\operatorname{res}_{s=1} \zeta_{K}(s)=\frac{2^{r}(2 \pi)^{s} h_{K} \operatorname{Reg}_{K}}{\omega_{K} \sqrt{\left|D_{K}\right|}} \text {, where }
$$

- $K \otimes_{\mathbb{Q}} \mathbb{R} \simeq \mathbb{R}^{r} \oplus \mathbb{C}^{s}$ as \mathbb{R}-algebras,
- $\sqrt{\left|D_{K}\right|}$ is the volume of the fundamental domain of $\mathcal{O}_{K} \subseteq K \otimes_{\mathbb{Q}} \mathbb{R}$,
- ω_{K} is the number of roots of unity in K,
- Reg_{K} is the regulator of $K: \mathcal{O}_{K}^{\times} \simeq \mathbb{Z}^{r+s-1} \times\{$ roots of unity $\}$, and the regulator is a measure of how "big" the generators of \mathbb{Z}^{r+s-1} are.

First ingredient: class number formula

Theorem (Analytic class number formula)

$$
\operatorname{res}_{s=1} \zeta_{K}(s)=\frac{2^{r}(2 \pi)^{s} h_{K} \operatorname{Reg}_{K}}{\omega_{K} \sqrt{\left|D_{K}\right|}}
$$

All terms except h_{K} and Reg_{K} are easy.
For $K=\mathbb{Q}\left[\xi_{p}\right]$, we have $K^{+}=\mathbb{Q}\left[\xi_{p}+\xi_{p}^{-1}\right]=K \cap \mathbb{R}$ its totally real subfield, and $r=0, s=(p-1) / 2$ while $r^{+}=(p-1) / 2, s^{+}=0$, and so $r+s-1=r^{+}+s^{+}-1$. Hence

$$
\frac{\operatorname{Reg}_{K} \omega_{K}}{\operatorname{Reg}_{K^{+}} \omega_{K^{+}}}=\# \mathcal{O}_{K}^{\times} / \mathcal{O}_{K^{+}}^{\times}=p \cdot 2^{(p-3) / 2}
$$

First ingredient: class number formula

Corollary

$$
\frac{\zeta_{K}}{\zeta_{K^{+}}}(1)=\frac{h_{K}}{h_{K^{+}}} \cdot \frac{\pi^{(p-1) / 2}}{p^{(p+3) / 4}}
$$

Using the factorizations

$$
\zeta_{K}(s)=\prod_{\chi:(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow \mathbb{C}} L(s, \chi), \quad \zeta_{K^{+}}(s)=\prod_{\substack{\chi:(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow \mathbb{C} \\ \chi(-1)=1}} L(s, \chi),
$$

we get

$$
\frac{\zeta_{K}}{\zeta_{K^{+}}}(s)=\prod_{\chi \text { odd }} L(s, \chi)
$$

First ingredient: class number formula

Theorem

$$
\frac{h_{K}}{h_{K^{+}}}=\prod_{\chi \text { odd }} L(1, \chi) \cdot \frac{p^{(p+3) / 4}}{\pi^{(p-1) / 2}}=2 p \prod_{\chi \text { odd }}-\frac{1}{2} L(0, \chi) .
$$

$L(0, \chi) \in\{$ Special values of L-functions $\} \longrightarrow$ Bernoulli numbers?
More on that later.

Second ingredient: cyclotomic units

To analyze $h_{K^{+}}$, we need to understand $\operatorname{Reg}_{K^{+}}$. This amounts to understanding $\mathcal{O}_{K^{+}}^{\times}$.

Definition

The cyclotomic units are the units of the form

$$
c(a)=\xi_{p}^{(1-a) / 2} \frac{\xi_{p}^{a}-1}{\xi_{p}-1} \in \mathcal{O}_{K^{+}}^{\times}, \quad p \nmid a .
$$

Proposition

The cyclotomic units generate $\mathcal{O}_{K^{+}}^{\times} \otimes \mathbb{Q}$.

Second ingredient: cyclotomic units

Corollary

If C is the subgroup generated by ± 1 and the cyclotomic units, then $\operatorname{Reg}_{K^{+}}=\operatorname{Reg}(C) / \#\left(\mathcal{O}_{K^{+}}^{\times} / C\right)$.

Together with the class number formula:

Theorem

$$
h_{K^{+}}=\frac{\operatorname{res}_{s=1} \zeta_{K^{+}}(s) \omega_{K^{+}} \sqrt{\left|D_{K^{+}}\right|}}{2^{r}(2 \pi)^{s} \operatorname{Reg}(C)} \cdot \#\left(\mathcal{O}_{K^{+}}^{\times} / C\right)=\#\left(\mathcal{O}_{K^{+}}^{\times} / C\right) .
$$

Recap

Theorem

If C is the subgroup of cyclotomic units, then

$$
h_{K}=2 p \prod_{\chi \text { odd }}-\frac{1}{2} L(0, \chi) \cdot \#\left(\mathcal{O}_{K^{+}}^{\times} / C\right)
$$

We need to relate these to Bernoulli numbers.

Generalized Bernoulli numbers

Recall that $\frac{t}{e^{t-1}}=\sum_{n \geq 0} B_{n} \frac{t^{n}}{n!}$ satisfy $\zeta(1-n)=-\frac{B_{n}}{n}$.

Definition

For a character $\chi:(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow \mathbb{C}$, define

$$
\sum_{a=1}^{p-1} \frac{\chi(a) t e^{a t}}{e^{p t}-1}=\sum_{n \geq 0} B_{n, \chi} \frac{t^{n}}{n!}
$$

Proposition

$$
L(1-n, \chi)=-\frac{B_{n, \chi}}{n}
$$

Generalized Bernoulli numbers

Corollary

$$
h_{K}=2 p \prod_{\chi \text { odd }} \frac{1}{2} B_{1, \chi} \cdot \#\left(\mathcal{O}_{K^{+}} / C\right)
$$

And by definition, $B_{1, \chi}=\frac{1}{p} \sum_{a=1}^{p-1} a \chi(a)$.

And we want to relate $B_{1, \chi}$ with B_{n} in terms of their divisibilities by p.

p-adic L-functions

Kummer noticed that the Bernoulli numbers satisfy some p-adic properties: If $2 m \equiv 2 n \bmod (p-1) p^{k-1}$ and $2 n \not \equiv 0 \bmod (p-1)$, then

$$
\left(1-p^{2 m-1}\right) \frac{B_{2 m}}{2 m} \equiv\left(1-p^{2 n-1}\right) \frac{B_{2 n}}{2 n} \quad \bmod p^{k}
$$

We can rephrase this as

$$
\zeta^{*}(1-2 m) \equiv \zeta^{*}(1-2 n) \quad \bmod p^{k}
$$

where $\zeta^{*}(s)$ is obtained by removing the Euler factor at p of $\zeta(s)$.

p-adic L-functions

Turns out that we have this p-adic "continuity" in much more generality. Choose an embedding $\mathbb{C} \hookrightarrow \mathbb{C}_{p}$ and consider the character
$\omega:(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow \mathbb{Z}_{p}$ where $\omega(a)$ is the unique $(p-1)$ root of unity in \mathbb{Z}_{p} congruent to a modulo p.

Theorem

There is a meromorphic (analytic if $\omega^{j} \neq 1$) p-adic L-function $L\left(s, \omega^{j}\right)$ in a p-adic disk around $s=1$ such that

$$
L_{p}\left(1-n, \omega^{j}\right)=-\left(1-\omega^{j-n}(p) p^{n-1}\right) \frac{B_{n, \omega^{j-n}}}{n}=L^{*}\left(1-n, \omega^{j-n}\right)
$$

Moreover, $L_{p}\left(s, \omega^{j}\right)=a_{0}+a_{1}(s-1)+\ldots$ with $p \mid a_{i}$ for $i>0$ if $\omega^{j} \neq 1$.

p-adic L-functions

We can recover the Kummer congruences:
$\left(1-p^{2 n-1}\right) \frac{B_{2 n}}{2 n}=-L_{p}\left(1-2 n, \omega^{2 n}\right) \equiv-L_{p}\left(1-2 m, \omega^{2 m}\right)=\left(1-p^{2 m-1}\right) \frac{B_{2 m}}{2 m}$
but we also get

Corollary

$$
\text { If } p-1 \nmid j+1, \text { then } \quad B_{1, \omega^{j}} \equiv \frac{B_{j+1}}{j+1} \quad \bmod p
$$

Proof.

$-B_{1, \omega^{j}}=L_{p}\left(1-1, \omega^{j+1}\right) \equiv{ }_{p} L_{p}\left(1-(j+1), \omega^{j+1}\right)=-\left(1-p^{j}\right) \frac{B_{j+1}}{j+1}$.

p-adic L-functions

Corollary

$$
2 p \prod_{\chi \text { odd }}-\frac{1}{2} B_{1, \chi} \equiv \prod_{j=1}^{(p-3) / 2}-\frac{1}{2} \frac{B_{2 j}}{2 j} .
$$

Proof.

The odd characters are $\omega, \omega^{3}, \ldots, \omega^{p-2}$. We have
$\omega^{p-2}=\omega^{-1}=\frac{1}{p} \sum_{a=1}^{p-1} a \omega^{-1}(a) \equiv \frac{p-1}{p} \bmod p$, and have $B_{1, \omega} \equiv \frac{B_{j+1}}{j+1}$ for
$j=1,3, \ldots, p-4$.

Corollary

$p \left\lvert\, \frac{h_{K}}{h_{K^{+}}}\right.$if and only if $p \mid B_{2 j}$ for some $1 \leq j \leq(p-3) / 2$.

What about the cyclotomic units?

Let $E=\mathcal{O}_{K^{+}}^{\times}$. Recall that $h_{K^{+}}=\# E / C$ where C is generated by the units

$$
c(a)=\xi_{p}^{(1-a) / 2} \frac{\xi_{p}^{a}-1}{\xi_{p}-1} .
$$

Looking at the p-component $(E / C)\left[p^{\infty}\right]$ of E / C, we have projectors
$\epsilon_{j} \in \mathbb{Z}_{p}(\operatorname{Gal}(K / \mathbb{Q}))$

$$
\epsilon_{j}=\frac{1}{p-1} \sum_{a=1}^{p-1} \omega^{j}(a) \sigma_{a}^{-1}
$$

that separates the problem into eigenspaces $\epsilon_{j}(E / C)\left[p^{\infty}\right]$.

What about the cyclotomic units?

Proposition

$\epsilon_{j}\left(C / p^{N} C\right)$ is generated by

$$
\kappa_{j}=\prod_{a=1}^{p-1} c(g)^{\omega_{N}(a)^{j} \sigma_{a}^{-1}}
$$

where g is a primitive root modulo p and $\omega_{N}(a) \equiv \omega(a) \bmod p^{N}$ with $\omega_{N}(a) \in \mathbb{Z}$.

In the same way that the regulator of C was related to special values of L-functions, one may compute

$$
\log _{p}\left(\kappa_{j}\right) \equiv-\left(\omega^{j}(g)-1\right) \tau\left(\omega^{-j}\right) L_{p}\left(1, \omega^{j}\right) \quad \bmod p^{N} .
$$

What about the cyclotomic units?

And so, if N is large enough,

Proposition

$$
\nu_{p}\left(\log _{p}\left(\kappa_{j}\right)\right)=\frac{j}{p-1}+\nu_{p}\left(L_{p}\left(1, \omega^{j}\right)\right)
$$

But note $\epsilon_{j}(E / C)\left[p^{\infty}\right] \neq 0$ if and only if κ_{j} is a p-power. If this is the case, then $\nu_{p}\left(\log _{p}\left(\kappa_{j}\right)\right) \geq 1$, and so $\nu_{p}\left(L_{p}\left(1, \omega^{j}\right)\right)>0$, which means that $p \mid B_{1, \omega^{j}}$. We conclude that

Theorem

$$
p\left|h_{K^{+}} \Longrightarrow p\right| \frac{h_{K}}{h_{K^{+}}} .
$$

Recap

Theorem

Corollary (Kummer)
$p\left|h_{k} \Longleftrightarrow p\right| B_{2} B_{4} \cdots B_{p-3}$.

Beyond class groups

The cyclotomic units form an example of what's called an Euler system, and the relations

$$
h_{K^{+}}=\#\left(\mathcal{O}_{K^{+}}^{\times} / C\right) \text { and }\left\{\begin{array}{c}
\log _{p}\left(\kappa_{j}\right)=(*) \cdot L_{p}\left(1, \omega^{j}\right) \\
\operatorname{Reg}(C)=(*) \cdot \operatorname{res}_{s=1} \zeta_{K^{+}}(s)
\end{array}\right.
$$

are an example of the more general philosophy that there should be certain relations
arithmetic objects \longleftrightarrow Euler systems \longleftrightarrow special values of L-functions

Beyond class groups

While we obtained $h_{K^{+}}=\#\left(\mathcal{O}_{K^{+}}^{\times} / C\right)$ using the class number formula, one can use methods pioneered by Kolyvagin to obtain it without the class number formula.

For instance, in the case of elliptic curves E / K the analog of the class number formula is the BSD formula

Conjecture (BSD formula)

$$
\operatorname{res}_{s=1} L(E / K, s)=\frac{\Omega_{E / K} \# \amalg(E / K) \operatorname{Reg}(E / K) \prod_{v \mid N} c_{v}(E / K)}{\left(\# E(K)_{\operatorname{tor}}\right)^{2}} .
$$

Beyond class groups

$$
\begin{aligned}
\operatorname{res}_{s=1} \zeta_{K}(s) & =\frac{2^{r}(2 \pi)^{s} h_{K} \operatorname{Reg}_{K}}{\omega_{K} \sqrt{\left|D_{K}\right|}} \\
& \longleftrightarrow \operatorname{res}_{s=1} L(E / K, s)=\frac{\Omega_{E / K} \# Ш(E / K) \operatorname{Reg}(E / K) \prod_{v \mid N} c_{v}(E / K)}{\left(\# E(K)_{\text {tor }}\right)^{2}}
\end{aligned}
$$

where $\mathcal{O}_{K}^{\times} \longleftrightarrow E(K)$, in a way that

$$
2^{r}(2 \pi)^{s} \longleftrightarrow \Omega_{E}, \quad h_{k} \longleftrightarrow \# Ш(E / K),
$$

$\operatorname{Reg}_{K} \longleftrightarrow \operatorname{Reg}(E / K), \quad \omega_{k} \longleftrightarrow\left(\# E(K)_{\text {tor }}\right)^{2}$,

$$
\frac{1}{\sqrt{\left|D_{K}\right|}} \longleftrightarrow \prod_{v \mid N} c_{v}(E / K)
$$

Beyond class groups

In the case $K=\mathbb{Q}[\sqrt{-D}]$ for certain D, one can construct an Euler system of Heegner points $\kappa=\left\{\kappa_{n}\right\}$, and when $\operatorname{ord}_{s=1} L(E / K, s)=1$, one have:

Theorem (Kolyvagin)

$\# Ш(E / K)=p^{2\left(\mathcal{M}_{0}-\mathcal{M}_{\infty}\right)}$ where $\mathcal{M}_{0}, \mathcal{M}_{\infty}$ are certain parameters of κ.
Theorem (Gross-Zagier)
$L^{\prime}(E, 1)=(*) \cdot\left\langle\kappa_{1}, \kappa_{1}\right\rangle_{\mathrm{NT}}$
which in certain cases can be combined to give the BSD formula for $r=1$.

