
p-ADIC MODULAR FORMS À LA KATZ

MURILO ZANARELLA

Abstract. These are notes from a talk given at STAGE about Chapter 2 of Katz’s p-adic

properties of modular schemes and modular forms.
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1. The Hasse invariant

In the treatment of p-adic modular forms à la Katz, the modular form Ep−1 played an important

role since its q-expansion was 1 modulo p.We begin by defining the Hasse invariant, a Katz modular

form over Fp that will play a similar role.

Let R be a ring with p = 0. Let E/R be an elliptic curve and ω be a basis for ωE/R. This

determines a dual basis η ∈ H1(E,OE) by Serre duality. We note that the absolute Frobenius

F : E → E induces a map F ∗ : H1(E,OE)→ H1(E,OE).

Definition 1.1 (Hasse invariant). For E,ω as above, we define the Hasse invariant A(E,ω) such

that F ∗(η) = A(E,ω) · η.

Remark 1.2. Note that if R is a finite field, then A(E,ω) = 0 if and only if E is supersingular.

Proposition 1.3. A(E,ω) ∈ M(Fp, 1, p − 1) is a (Katz) modular form over Fp of weight p − 1

and level 1.

Proof. For λ ∈ R×, if ω′ = λω then η′ = λ−1η, and so

F ∗(λ−1η) = λ−pF ∗(η) = λ−pA(E,ω) · η = λ1−pA(E,ω) · (λ−1η),
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2 MURILO ZANARELLA

and hence A(E, λω) = λ1−pA(E,ω). �

Proposition 1.4. A ∈ S(Fp, 1, p − 1) is a holomorphic (Katz) modular form over Fp of weight

p− 1 and level 1. Moreover, its q-expansion is 1.

Proof. We use that H1(E,OE) = LieE is the R-module of invariant derivations of E/R, and the

action of F ∗ on η ∈ H1(E,OE) consists of taking the p-th iterate F ∗(η) = η◦(p).

The completion of the Tate curve along its identity section is Ĝm, and one can check that

the canonical differential ωcan is simply dt/t. For the uniformizing parameter t0 = t − 1, this

becomes ωcan = dt0/(1 + t0)/ This means that the invariant derivation ηcan dual to ωcan satisfies

ηcan(t0) = 1 + t0. Now note η◦(p)can (t0) = 1 + t0, and so F ∗(ηcan) agrees with ηcan at t0. This is

enough to conclude that F ∗(ηcan) = ηcan. �

In the study of (Katz) p-adic modular forms, we will use an appropriate lift of A to other

coefficient rings.

Definition 1.5. We say that n is p-good if there exist a holomorphic (Katz) modular form Ã ∈

S(Z[1/n], n, p− 1) such that A = Ã mod p.

Proposition 1.6. The following n are p-good.

p n

2 3 ≤ n ≤ 11, 2 - n

3 n ≥ 2, 3 - n

≥ 5 n ≥ 1, p - n

Proof. This follows from the base-change theorems. �

We want to define a suitable notion of p-adic modular forms in the style of Katz. If we hope

that some form of the q-expansion principle to hold, then Ãp
N−1

should “converge” to 1 as N →∞,

since its q expansions are 1 modulo pN . However, this is not consistent where Ã(E,ω) = 0, i.e. at

“supersingular” curves. So, for such a notion of p-adic modular forms, we will need to consider our

test objects away from such supersingular locus.

2. p-adic modular forms with growth conditions

Let R0 be a p-adically complete ring and a Z[1/n]-module. For any r ∈ R0 and a p-good n, we

will define the moduleM(R0, r, n, k) of p-adic modular forms with growth condition r. Roughly, we
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restrict the possible test objects away from modular forms whose Hasse invariant is in a (p-adic)

disk of radius |r|p around 0.

If r = 1, then we are restricting to the ordinary locus, and turns out that we will recover Serre’s

modular forms (at least for integral weights k). Taking r to have positive p-adic valuation will

correspond to overconvergent modular forms.

Definition 2.1. A (Katz) p-adic modular form f ∈ M(R0, r, n, k) over R0 of weight k, level n

and growth r is a rule that assigns to a triple (E/S, αn, Y ) where

(a) E/S is an elliptic curve over an R0-scheme S on which p is nilpotent,

(b) αn is a level n structure,

(c) Y is a section of ω⊗1−p such that Y · Ã(E/S, αn) = r,

a section f(E/S, αn, Y ) ∈ ω⊗kE/S such that (i) f only depends on the S-isomorphism class of such

triples and (ii) f commutes with base change of R0-schemes.

Remark 2.2. As in the definition of Katz modular forms, we may consider f as a rule from

(E/R, ω, αn, Y ) to R, for R0-algebras R with p nilpotent and Y ∈ R with Y · Ã(E,ω, αn) = r

compatible with extension of scalars and such that

f(E/R, λω, αn, λ
p−1Y ) = λ−kf(E/R, ω, αn, Y ).

Remark 2.3. We may also evaluate f for p-adically complete R0-algebras R by passing to the limit.

Definition 2.4. We say f ∈M(R0, r, n, k) is holomorphic at infinity and denote f ∈ S(R0, r, n, k)

if for all N ≥ 1 and level n structures αn the value

f(Tate(qn), ωcan, αn, r · (Ã(Tate(qn), ωcan, αn))−1) ∈ (R0/p
NR0)⊗Z[1/n] Z[1/n, ζn]((q))

lies in (R0/p
NR0)⊗Z[1/n] Z[1/n, ζn]JqK.

Note that, formally, we have

M(R0, r, k, n) = lim←−M(R0/p
NR0, r, k, n) and S(R0, r, k, n) = lim←−S(R0/p

NR0, r, k, n).

Our first goal will be to understand a bit more about these spaces. We first do so in the case

that p is nilpotent in R0, by giving it a moduli interpretation.
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2.1. When p is nilpotent in R0. For now, we assume p is nilpotent in R0. Let n ≥ 3 be p-good.

We denote L := ω⊗1−p.

We consider the moduli problem

FR0,r,n : S 7→ {S-isomorphism classes of (E/S, αn, Y )}.

By the definition of Mn, this is the same as

FR0,r,n : S 7→ {R0-morphisms g : S →Mn ⊗R0, together with Y ∈ g∗L satisfying Y · g∗Ã = r}.

This is a subfunctor of the following functor

FR0,n : S 7→ {R0-morphisms g : S →Mn ⊗R0, together with Y ∈ g∗L }.

Geometrically, this last functor should be representable by the “total space” of L . The next

proposition makes this precise.

Proposition 2.5. FR0,n is representable by SpecMn⊗R0
(Sym•(Ľ )). Moreover, FR0,r,n is repre-

sentable by SpecMn⊗R0
(Sym•(Ľ )/(Ã− r)).

Proof. The first statement follows essentially from the definition of the scheme SpecMn⊗R0
(Sym•(Ľ )).

Let us work this out and see how to integrate the growth condition.

Given a morphism g : S →Mn⊗R0, coverMn⊗R0 by open sets SpecBi such that L trivializes

with invertible section ľi. Cover g−1(SpecBi) by open sets SpecAij . By the definition of the relative

spectrum, we have SpecMn⊗R0
(Sym•(Ľ ))|SpecBi

= Spec(Bi[ľi]).

Given Y ∈ g∗L , we can lift the morphism g : Bi → Aij to g̃ij : Bi[ľi]→ Aij by

∑
k

bk(ľi)
k 7→

∑
k

bk(Y · g∗ ľi)k.

One can check that these glue to define g̃ : S → SpecMn⊗R0
(Sym•(Ľ )). Moreover, the data nec-

essary for such a lift is exactly the data of giving such a Y ∈ g∗L . This means that FR0,n is

represented by SpecMn⊗R0
(Sym•(Ľ )).

If we want to specify a growth condition, then having Y · Ã = r is the same as g̃ij factoring

through Bi[ľi]/(Ã− r) for all i, j. So FR0,r,n is represented by SpecMn⊗R0
(Sym•(Ľ )/(Ã− r)). �

As a consequence of this, we have the following description of (Katz) p-adic modular forms from

(Katz) modular forms of varying weights.
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Corollary 2.6. We have M(R0, r, n, k) =
(⊕

j≥0M(R0, n, k + j(p− 1))
)
/(Ã− r).

Proof. We have M(R0, r, n, k) = H0(SpecMn⊗R0
(Sym•(Ľ )/(Ã− r)), ω⊗k), and this is

H0(Mn ⊗R0, ω
⊗k ⊗ Sym•(Ľ )/(Ã− r)) = H0(Mn ⊗R0,

⊕
j≥0

ωk+j(p−1)/(Ã− r)).

Since Mn ⊗R0 is affine, this isH0(Mn ⊗R0,
⊕
j≥0

ωk+j(p−1))

 /(Ã− r) =

⊕
j≥0

M(R0, n, k + j(p− 1))

 /(Ã− r). �

The subspace of holomorphic forms is what one would expect.

Proposition 2.7. The submodule S(R0, r, n, k) ⊆M(R0, r, n, k) corresponds to

H0(SpecMn⊗R0
(Sym•(Ľ )/(Ã− r), ω⊗k).

Proof. Essentially, this follows since the cusps onMn are ordinary, i.e., Ã is invertible on the cusps.

We may assume ζn ∈ R0. Let ∞ = Mn ⊗ R0 − Mn ⊗ R0. We have seen that completion

of Mn ⊗ R0 has its ring isomorphic to a finite number of copies of R0JqK. The completion of

SpecMn⊗R0
(Sym•(Ľ )/(Ã− r)) along the inverse image of∞, hence, is a finite number of copies of

R0JqK[Y ]/(Y · Ã(Tate(qn), ωcan, αn)− r).

Since Ã(Tate(qn), ωcan, αn) is invertible, this ring is equal to R0JqK.

So similarly as before, a section of H0(SpecMn⊗R0
(Sym•(Ľ )/(Ã− r), ω⊗k) can be extended to

∞ exactly when it is holomorphic. �

Corollary 2.8. We have S(R0, r, n, k) = H0(Mn ⊗R0,
⊕

j≥0 ω
k+j(p−1)/(Ã− r)).

Proof. This is as in the previous corollary. �

2.2. When R0 is p-adically complete.

Definition 2.9. We say n is p, k-good if (i) n is p-good, (ii) 3 ≤ n ≤ 11 if k = 1 or k = 0, p = 2.

Theorem 2.10. Let n ≥ 3 be p, k-good. Let r ∈ R0 be not a zero divisor. Then we have an

isomorphismlim←−
N

H0(Mn,
⊕
j≥0

ωk+j(p−1))⊗Z[1/n] (R0/p
NR0)

 /(Ã−r) ∼−→ lim←−
N

S(R0/p
NR0, r, n, k) = S(R0, r, n, k).
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Concretely, this means that elements of S(R0, r, n, k) are formal sums
∑
a≥0 sa where we have

sa ∈ S(R0, n, k + a(p− 1)) and sa → 0 when a→∞, where we identify two of these sums if they

differ by a multiple of (Ã− r).

Proof for k > 0. Let S =
⊕

j≥0 ω
k+j(p−1) on Mn. Put SN = S ⊗ R0/p

nR0 and consider the

exact sequence

0→ SN
Ã−r−−−→ SN → SN/(Ã− r)→ 0.

We saw in the proof of the base change theorems that H1(Mn, ω
⊗l) = 0 if l ≥ 2 or if l = 1 and

3 ≤ n ≤ 11. So if n is p, k-good and k > 0, we have H1(Mn,SN ) = 0.

By the base change theorems, we then get an inverse system

0→ H0(Mn,S )⊗R0/p
NR0

Ã−r−−−→ H0(Mn,S )⊗R0/p
NR0 → H0(Mn,SN/(Ã− r))→ 0.

Since the transition maps for the left most modules are surjective, taking inverse limit is exact,

and we get what we want.

For k = 0, we have instead that H1(Mn,S ) = H1(Mn,O) so one has to be more careful. �

3. Basis of p-adic modular forms

By the previous result, we can describe (Katz) p-adic modular forms in terms of regular (Katz)

modular forms and multiplications by Ã. To find a basis of p-adic modular forms, we first analyze

the multiplication by Ã more closely.

Lemma 3.1. Let n ≥ 3 be p-good. Then the map

S(Zp, n, k)
·Ã−→ S(Zp, n, k + p− 1)

is injective, and its cokernel is a finite free Zp-module.

Proof. The injectivity follows from the q-expansion principle since Ã has q-expansions are in-

vertible. We need to prove that the above cokernel is torsion free. It suffices to prove that

Ãf ∈ p · S(Zp, n, k + p − 1) =⇒ f ∈ p · S(Zp, n, k). Again, this follows from the q-expansion

principle since the q-expansions of Ã are invertible. �

This means that we can choose once and for all a direct sum decomposition

H0(Mn ⊗ Zp, ωk+(j+1)(p−1)) ' Ã ·H0(Mn ⊗ Zp, ωk+j(p−1))⊕B(n, k, j + 1).
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Setting B(n, k, 0) := H0(Mn ⊗ Zp, ωk) and B(R0, n, k, j) = B(n, k, j)⊗Zp
R0 give us a direct sum

decomposition

j⊕
a=0

B(R0, n, k, a)
∼−→ S(R0, n, k + j(p− 1)),

j∑
a=0

ba 7→
j∑

a=0

Ãj−aba.

Definition 3.2. Let Brigid(R0, n, k) be the R0-module consisting of formal sums
∑
a≥0 ba for

ba ∈ B(R0, n, k, a) such that ba → 0, that is, such that for any N > 0 there exist M > 0 for which

ba ∈ pNB(R0, n, k, a) for all a ≥M.

Theorem 3.3. Let n ≥ 3 be p, k-good. Let r ∈ R0 be not a zero divisor. Then we have an

isomorphism

φr : Brigid(R0, n, k)
∼−→ S(R0, r, n, k)

given by ∑
a≥0

ba 7→

(E/S, αn, Y ) 7→
∑
a≥0

ba(E/S, αn) · Y a
 .

We may think of the image of
∑
a≥0 ba as “

∑
a≥0 r

a ba
Ãa
.”

Proof. Given
∑
a≥0 sa with sa ∈ S(R0, n, k+a(p−1)), consider the decomposition sa =

∑
i+j=a Ã

ibj,a

with bj,a ∈ B(R0, n, k, j). Note that bj,a → 0 as a→∞ uniformly in j. Then,∑
a≥0

sa =
∑
a≥0

∑
i+j=a

Ãibj,a

=
∑
a≥0

∑
i+j=a

ribj,a + (Ã− r)

∑
a≥0

∑
i+j=a

bj,a
∑

u+v=i−1
Ãurv


so as elements of S(R0, r, n, k), we have

∑
a≥0 sa =

∑
a≥0

∑
i+j=a r

ibj,a. Then

∑
a≥0

sa =
∑
a≥0

∑
i+j=a

ribj,a =
∑
i≥0

∑
j≥0

ribj,i+j =
∑
i≥0

ri
∑
j≥0

bj,i+j .

Letting b′i := Ãi
∑
j≥0 bj,i+j , we then have

∑
a≥0 sa = φr(

∑
i≥0 b

′
i).

For injectivity, it suffices to prove that if φr(
∑
a≥0 ba) = 0, then ba ∈ pNB(R0, n, k, a) for all

N. For a fixed N, there is M large such that φr(
∑M
a=0 ba) ≡ 0 mod pN and ba ≡ 0 mod pN for

a > M. Then
∑M
a=0 r

aÃM−aba ≡ 0 mod pN , and hence we condlude that raba ∈ pNB(R0, n, k, a)

for all N, a. Since r is not a zero divisor, this means ba = 0. �
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Corollary 3.4. Consider the map S(R0, r, n, k)→ S(R0, 1, n, k) defined modularly by (E/S, αn, Y ) 7→

(E/S, αn, rY ). This is injective, and we have a commutative diagram

Brigid(R0, n, k) Brigid(R0, n, k)

S(R0, r, n, k) S(R0, 1, n, k)

φr,1

φr φ1

where φr,1 :
∑
a≥0 ba 7→

∑
a≥0 r

aba.

4. r = 1 and the q-expansion principle

When r = 1, we obtain a q-expansion principle for (Katz) p-adic modular forms by reducing to

the q-expansion principle we have seen before.

Theorem 4.1. Let n ≥ 3 be p, k-good. Let x ∈ R0 be a divisor of pN for some N > 0. For

f ∈ S(R0, 1, n, k), the following are equivalent:

(1) f ∈ x · S(R0, 1, n, k),

(2) the q-expansions of f all lie in x ·R0[ζn]JqK,

(3) on each of the ϕ(n) connected components of Mn ⊗ Z[1/n, ζn], there is at least one cusp

where the q-expansion of f lies in x ·R0[ζn]JqK.

Proof. It suffices to prove (3) =⇒ (1). Let f = φ1(
∑
a≥0 ba). If M > 0 is such that ba ∈ pN ·

B(R0, n, k, a) for a > M, then we may assume without loss of generality that f = φ1(
∑M
a=0 ba).

Now the q-expansion of f at (Tate(qn), ωcan, αn, Ã
−1) is the same as that of

M∑
a=0

baÃ
−a =

∑M
a=0 baÃ

M−a

ÃM
.

Hence
∑M
a=0 baÃ

M−a ∈ S(R0, n, k+M(p−1)) has q-expansion lying in x ·R0[ζn]JqK in at least one

cusp in each component. By the regular q-expansion principle, this means that
∑M
a=0 baÃ

M−a ∈

x · S(R0, n, k + M(p − 1)), and hence ba ∈ x · B(R0, n, k, a) for all a. This implies that f ∈

x · S(R0, 1, n, k). �

Now we see that we recover Serre’s definition, at least when the weight is integral.

Proposition 4.2. Let n ≥ 3 be p, k-good. Suppose that for each cusp α of Mn ⊗ Z[ζn] we are

given a power series fα ∈ R0[ζn]JqK. Then the following are equivalent:

(1) The fα are the q-expansions of an element f ∈ S(R0, 1, n, k).
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(2) For every N > 0, there is an integer M ≡ 0 mod pN−1 and a modular form gN ∈

S(R0, n, k +M(p− 1)) whose q-expansions are congruent modulo pN to the given fα.

Proof. (1) =⇒ (2): As in the proof of the theorem above, for every M sufficiently large there is

g ∈ S(R0, n, k,M(p − 1)) such that the q-expansions of f agree with the q-expansions of gÃ−M .

We choose M ≡ 0 mod pN−1. Since we have the q expansion congruences Ã(q) ≡ 1 mod p, from

pN−1 | M we obtain ÃM (q) ≡ 1 mod pN . We conclude that the q-expansions as f and g agree

modulo N.

(2) =⇒ (1): Possibly multiplying gN by a power of Ãp
N−1

, we may assume their weights

k+MN (p−1) are increasing. Then (gN+1−gN ÃMN+1−MN ) has q-expansion a multiple of pN . Hence

(gN+1− gN ÃMN+1−MN ) ∈ pNS(R0, n, k+MN+1(p− 1)). Then f =
∑
N≥1(gN+1− gN ÃMN+1−MN )

is a well defined element of S(R0, 1, n, k) that agree with the q-expansions of gN modulo pN . �

Remark 4.3. Similarly as in Borys’s talk, we can obtain analogues to the above results for n = 1, 2

(still requiring that n be p, k-good) by considering the space of such forms of level n inside the

space of forms of larger levels, and mapping down via projectors.
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