p-ADIC MODULAR FORMS A LA KATZ

MURILO ZANARELLA

ABsTRACT. These are notes from a talk given at STAGE about Chapter 2 of Katz’s p-adic

properties of modular schemes and modular forms.
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1. THE HASSE INVARIANT

In the treatment of p-adic modular forms a la Katz, the modular form E,_; played an important
role since its g-expansion was 1 modulo p. We begin by defining the Hasse invariant, a Katz modular
form over IF,, that will play a similar role.

Let R be a ring with p = 0. Let E/R be an elliptic curve and w be a basis for wp/p- This
determines a dual basis n € H'(E,Og) by Serre duality. We note that the absolute Frobenius
F: E — E induces a map F*: H*(E,Op) — H'(E,Op).

Definition 1.1 (Hasse invariant). For E,w as above, we define the Hasse invariant A(FE,w) such

that F*(n) = A(E,w) - .
Remark 1.2. Note that if R is a finite field, then A(E,w) = 0 if and only if E is supersingular.

Proposition 1.3. A(E,w) € M(F,,1,p — 1) is a (Katz) modular form over Fy, of weight p — 1

and level 1.
Proof. For A € R*, if w’ = Aw then 1’ = A~1, and so
F*OClg) = XPF () = N PA(B,w) 5 = NP A, w) - (),

Date: February 26, 2020.



2 MURILO ZANARELLA
and hence A(FE,\w) = A\'"PA(E,w). O

Proposition 1.4. A € S(F,,1,p — 1) is a holomorphic (Katz) modular form over F, of weight

p — 1 and level 1. Moreover, its q-expansion is 1.

Proof. We use that H'(E,Og) = LieFE is the R-module of invariant derivations of E/R, and the
action of F* on n € H'(FE,OF) consists of taking the p-th iterate F*(n) = n°®).

The completion of the Tate curve along its identity section is Gm, and one can check that
the canonical differential wc,, is simply dt/t. For the uniformizing parameter tg = ¢ — 1, this
becomes wean = dtg/(1 + to)/ This means that the invariant derivation 7c,, dual to wea, satisfies

o(p)

Nean(to) = 1 + to. Now note ncan’ (to) = 1 + to, and so F*(n)ean) agrees with 7can at to. This is
enough to conclude that F™*(can) = 7can- U

In the study of (Katz) p-adic modular forms, we will use an appropriate lift of A to other

coefficient rings.

Definition 1.5. We say that n is p-good if there exist a holomorphic (Katz) modular form Ae
S(Z[1/n),n,p — 1) such that A = A mod p.

Proposition 1.6. The following n are p-good.

P n
2 |3<n<1l, 2¢tn
3 n>2 3tn

>5 n>1, ptn

Proof. This follows from the base-change theorems. O

We want to define a suitable notion of p-adic modular forms in the style of Katz. If we hope
that some form of the g-expansion principle to hold, then AP" " should “converge” to 1 as N — oo,
since its ¢ expansions are 1 modulo p”~. However, this is not consistent where A(E,w) =0, i.e. at
“supersingular” curves. So, for such a notion of p-adic modular forms, we will need to consider our

test objects away from such supersingular locus.

2. p-ADIC MODULAR FORMS WITH GROWTH CONDITIONS

Let Ry be a p-adically complete ring and a Z[1/n]-module. For any r € Ry and a p-good n, we

will define the module M (Ry, r, n, k) of p-adic modular forms with growth condition r. Roughly, we
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restrict the possible test objects away from modular forms whose Hasse invariant is in a (p-adic)
disk of radius |r|, around 0.

If r = 1, then we are restricting to the ordinary locus, and turns out that we will recover Serre’s
modular forms (at least for integral weights k). Taking r to have positive p-adic valuation will

correspond to overconvergent modular forms.

Definition 2.1. A (Katz) p-adic modular form f € M(Ry,r,n,k) over Ry of weight k, level n

and growth r is a rule that assigns to a triple (E/S, a,,Y") where

(a) E/S is an elliptic curve over an Ry-scheme S on which p is nilpotent,
(b) a, is a level n structure,

(¢) Y is a section of w®'~? such that Y - A(E/S,a,,) = r,

a section f(E/S,an,Y) € g%’/cs such that (i) f only depends on the S-isomorphism class of such

triples and (ii) f commutes with base change of Ry-schemes.

Remark 2.2. As in the definition of Katz modular forms, we may consider f as a rule from
(E/R,w,a,,Y) to R, for Rp-algebras R with p nilpotent and Y € R with YV - A(E,w,ozn) =7

compatible with extension of scalars and such that
f(E/R, M\, o, \P"1Y) = X" f(B/R,w, a0, Y).

Remark 2.3. We may also evaluate f for p-adically complete Ry-algebras R by passing to the limit.

Definition 2.4. We say f € M(Rg,r,n, k) is holomorphic at infinity and denote f € S(Ryp,r,n, k)

if for all N > 1 and level n structures «,, the value
f(Tate(q"), wean, n, 7 - (A(Tate(q"), wean, @) ~") € (Ro/P™ Ro) @z11/m) Z[1/1, (0] (())
lies in (Ro/p™ Ro) ®z)1/n) Z[1/n, Cu]4].
Note that, formally, we have
M(Rg,r, k,n) = @M(Ro/pNRo,r,k,n) and S(Rg,r k,n) = @S(RO/pNRO,T,k,n).

Our first goal will be to understand a bit more about these spaces. We first do so in the case

that p is nilpotent in Ry, by giving it a moduli interpretation.
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2.1. When p is nilpotent in Ry. For now, we assume p is nilpotent in Ry. Let n > 3 be p-good.
We denote & 1= w®1 P,

We consider the moduli problem
FRyrn: S+ {S-isomorphism classes of (E/S, ap,Y)}.
By the definition of M,,, this is the same as
FRorm: S+ {Ro-morphisms g: S — M, ® Ry, together with Y € ¢*.& satistying YV - g* A = r}.
This is a subfunctor of the following functor
Fryn: S+ {Ro-morphisms g: S — M, ® Ry, together with Y € ¢*.£}.

Geometrically, this last functor should be representable by the “total space” of .Z. The next

proposition makes this precise.

Proposition 2.5. Fg, , is representable by Specy; op, (Sym®(Z)). Moreover, Fry . n is repre-

sentable by SpeCMH®RD(Sym'($)/(/~1 —7)).

Proof. The first statement follows essentially from the definition of the scheme Spec,; g, (Sym®(2)).
Let us work this out and see how to integrate the growth condition.

Given a morphism g: S — M, ® Ry, cover M,, ® Ry by open sets Spec B; such that .Z trivializes
with invertible section I;. Cover g~ (Spec B;) by open sets Spec A;;. By the definition of the relative
spectrum, we have Specy; o r, (Sym®(-2))|spec 5, = Spec(B;[l;)).

Given Y € g*.%, we can lift the morphism g: B; — A;; to gi;: B; (] = A;; by

D bl = be(Y - gt L)k
k k

One can check that these glue to define §: S — Specy; g g, (Sym®(Z)). Moreover, the data nec-
essary for such a lift is exactly the data of giving such a Y € ¢*.#. This means that Fg, , is
represented by Spec,; o g, (Sym® (2)).

If we want to specify a growth condition, then having Y - A = r is the same as gi; factoring

through Bj[l;]/(A —r) for all i, j. So Fry,rn is represented by Specy, g, (Sym® (D)) (A=r)). O

As a consequence of this, we have the following description of (Katz) p-adic modular forms from

(Katz) modular forms of varying weights.
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Corollary 2.6. We have M(Ro,r,n, k) = (@jzo M(Ro,n, k+j(p— 1))) J(A—=r).

Proof. We have M (Rg,r,n,k) = HO(SpecMn@)RO(Sym'(,,?)/(;l —7)),w®*), and this is

H°(M,, ® Ro,w®" @ Sym®(£)/(A—r)) = H'(M, & Ro, P ">~V /(A —-1)).
J20

Since M,, ® Ry is affine, this is

HO(M, ® Ry, P * D) | J(A=r) = [ M(Ro.n.k+j(p—1) | /(A=r). DO
Jj=0 >0

The subspace of holomorphic forms is what one would expect.

Proposition 2.7. The submodule S(Rg,r,n,k) C M(Ro,r,n,k) corresponds to
HO(Specyy- p, (Sym*(2)/(A - 1), %),

Proof. Essentially, this follows since the cusps on M,, are ordinary, i.e., 4 is invertible on the cusps.
We may assume (, € Rg. Let co = M, ® Ry — M,, ® Ry. We have seen that completion
of M,, ® Ry has its ring isomorphic to a finite number of copies of Ro[q]. The completion of

Specy—g g, (Sym® (2)/(A—r)) along the inverse image of co, hence, is a finite number of copies of
Ro[q][Y1/(Y - A(Tate(q"), wean, an) — 7).

Since A(Tate(q"),Wean, vy ) is invertible, this ring is equal to Ro[q].
So similarly as before, a section of H(Specy; g, (Sym®(Z)/(A —r),w®*) can be extended to

oo exactly when it is holomorphic. O
Corollary 2.8. We have S(Ry,7,n,k) = H°(M, @ Ry, Do WFHIP=1) /(A — 7).

Proof. This is as in the previous corollary. O
2.2. When R is p-adically complete.

Definition 2.9. We say n is p, k-good if (i) n is p-good, (ii)) 3<n<1lifk=1ork=0,p=2.
Theorem 2.10. Let n > 3 be p,k-good. Let r € Ry be not a zero divisor. Then we have an

isomorphism

lim H° (3, @ w7 V) @211/ (Ro/p™ Ro) | /(A—r) = lim S(Ro/p™ Ro, 7.0, k) = S(Ro, v, n, k).
N j>0 N
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Concretely, this means that elements of S(Ro,r,n,k) are formal sums ZaZO S, where we have
Sa € S(Ro,n,k+a(p—1)) and s, — 0 when a — 0o, where we identify two of these sums if they

differ by a multiple of (A — 7).

Proof for k > 0. Let ¥ = @jzo WFtIP=1) on M,. Put .y = . ® Ry/p"Ro and consider the
exact sequence

O%yNﬂ)yN—)yN/(A—T)—)O.

We saw in the proof of the base change theorems that H!(M,,,w®) = 0ifl > 2 orif | = 1 and
3 <n <11.So if n is p, k-good and k > 0, we have H(M,,,.#n) = 0.

By the base change theorems, we then get an inverse system
0 — HO(M,,.) @ Ro/p" Ry 2= H°(M,,.#) ® Ro/p™ Ry — H°(M,, /(A —r)) = 0.

Since the transition maps for the left most modules are surjective, taking inverse limit is exact,
and we get what we want.

For k = 0, we have instead that H'(M,,,.%) = H(M,, O) so one has to be more careful. [

3. BASIS OF p-ADIC MODULAR FORMS

By the previous result, we can describe (Katz) p-adic modular forms in terms of regular (Katz)
modular forms and multiplications by A. To find a basis of p-adic modular forms, we first analyze

the multiplication by A more closely.
Lemma 3.1. Let n > 3 be p-good. Then the map

S(Zp, 1 k) 2 S(Zp,m ki +p— 1)
is injective, and its cokernel is a finite free Z,-module.

Proof. The injectivity follows from the g-expansion principle since A has g-expansions are in-
vertible. We need to prove that the above cokernel is torsion free. It suffices to prove that
Af e p- S(Zp,n,k+p—1) = f € p-S(Zy,n,k). Again, this follows from the g-expansion

principle since the g-expansions of A are invertible. ]

This means that we can choose once and for all a direct sum decomposition

HO(M,, ® Z,, 000 D) ~ 4. HO(M, © Z,, ")) @ B(n, k,j + 1).
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Setting B(n, k,0) := H*(M, ® Z,,w") and B(Rg,n,k,j) = B(n, k,j) ®z, Ro give us a direct sum
decomposition
j i i
P B(Ro,n,k,a) = S(Ro,n k+j(p—1)), > barr > A%,
a=0 a=0 a=0
Definition 3.2. Let B"#4(Ry,n,k) be the Ryp-module consisting of formal sums > a0 ba for
b, € B(Ry,n, k,a) such that b, — 0, that is, such that for any N > 0 there exist M > 0 for which

ba € pNB(Ry,n,k,a) for all a > M.

Theorem 3.3. Let n > 3 be p,k-good. Let r € Ry be not a zero divisor. Then we have an
isomorphism

ép: B8Ry, n, k) = S(Ry, 7,0, k)
given by

> bar | (B)S,00,Y) =Y ba(E/S, ) - Y

a>0 a>0

. : « by »
We may think of the image of 3 ,5qba as D ,5q7% 3%

Proof. Given 3}, 8q With s € S(Ro, n, k+a(p—1)), consider the decomposition s, =3, ,,_, A%,

with b; , € B(Ro,n, k, j). Note that b; , — 0 as @ — oo uniformly in j. Then,

D sa=d" > Ab,

a>0 a>0i+j=a
=2 2 bt (A=) D D b D AN
a>0i+j=a a>0i+j=a utv=i—1

so as elements of S(Ry,7,n,k), we have >" <y Sa = > .50 Ziﬂ-:a 7%b; 4. Then

Dosa=D D rhia=3 3 i =D 1) by

a>0 a>0i+j=a i>0 j>0 i>0 >0

Letting b} := A’ > j>0jitj, we then have 3° ~sa = ¢r (3250 b))

For injectivity, it suffices to prove that if ¢T(Za20 ba) = 0, then b, € p¥ B(Rg,n,k,a) for all
N. For a fixed N, there is M large such that QST(Z(]LV[:O be) =0 mod p" and b, = 0 mod pV for
a > M. Then Zi\io reAM=ap. =0 mod p", and hence we condlude that r®b, € pNB(Ry,n,k,a)

for all N,a. Since r is not a zero divisor, this means b, = 0. |
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Corollary 3.4. Consider the map S(Ro,r,n, k) — S(Ro,1,n, k) defined modularly by (E/S, an,Y) —

(E/S,an,rY). This is injective, and we have a commutative diagram

B (Ry, n, k) —27Ls BriSd(Ry n. k)

|+ Jo

S(Ro,’f',n, k) E— S(R07 1,7’1, k)

where ¢r.1: Zazo bg Zazo roh,.

4. r =1 AND THE ¢g-EXPANSION PRINCIPLE

When r = 1, we obtain a g-expansion principle for (Katz) p-adic modular forms by reducing to

the g-expansion principle we have seen before.

Theorem 4.1. Let n > 3 be p,k-good. Let x € Ry be a divisor of pV for some N > 0. For
f € S(Ro,1,n,k), the following are equivalent:

(1) f € x-S(Ro,1,n,k),

(2) the q-expansions of f all lie in x - Ro[Cn][q],

(3) on each of the p(n) connected components of M, ® Z[1/n,(,], there is at least one cusp

where the g-expansion of f lies in x - Ro[¢,][q]-

Proof. 1t suffices to prove (3) = (1). Let f = ¢1(3_,5¢0a). If M > 0 is such that b, € pv -
B(Ry,n,k,a) for a > M, then we may assume without loss of generality that f = ¢1(Ziw:0 ba)-

Now the g-expansion of f at (Tate(q"),wWean, n, A~1) is the same as that of

M M M
S pd-e = Zamo b AT
a = = :
a=0 AM
Hence 22/[:0 b AM=a ¢ S(Ry,n,k+M(p—1)) has g-expansion lying in z - Ry [¢n][¢] in at least one
cusp in each component. By the regular g-expansion principle, this means that Zfl\io by AM—a ¢

- S(Ro,n,k + M(p — 1)), and hence b, € z - B(Rg,n,k,a) for all a. This implies that f €
x - S(Ro,1,n,k). |

Now we see that we recover Serre’s definition, at least when the weight is integral.

Proposition 4.2. Let n > 3 be p, k-good. Suppose that for each cusp o of M, ® Z[(,] we are

given a power series fo € Ro[Cn]lg]. Then the following are equivalent:

(1) The f, are the q-expansions of an element f € S(Rp,1,n,k).
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N—-1

(2) For every N > 0, there is an integer M = 0 mod p and a modular form gn €

S(Ro,n, k+ M(p — 1)) whose g-expansions are congruent modulo p™ to the given f..

Proof. (1) = (2): As in the proof of the theorem above, for every M sufficiently large there is
g € S(Ro,n, k, M(p— 1)) such that the g-expansions of f agree with the g-expansions of gA—M.
We choose M =0 mod p™~!. Since we have the ¢ expansion congruences fl(q) =1 mod p, from
pN~1 | M we obtain AM(q) =1 mod p". We conclude that the g-expansions as f and g agree
modulo N.

(2) = (1): Possibly multiplying gy by a power of A”Nﬁl, we may assume their weights
k+ My (p—1) are increasing. Then (gx 41— gy AMN+1=M~) has g-expansion a multiple of pV. Hence
(gn41— gy AMye1=Muy € pNS(Ry, n, k+ My 11 (p—1)). Then f = >on>1(9n+1 — gy AMy+1=Mn)

is a well defined element of S(Ry,1,n, k) that agree with the g-expansions of gy modulo pV. O

Remark 4.3. Similarly as in Borys’s talk, we can obtain analogues to the above results for n = 1,2
(still requiring that n be p, k-good) by considering the space of such forms of level n inside the

space of forms of larger levels, and mapping down via projectors.
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