p-ADIC MODULAR FORMS À LA KATZ

MURILO ZANARELLA

ABSTRACT. These are notes from a talk given at STAGE about Chapter 2 of Katz's *p*-adic properties of modular schemes and modular forms.

Contents

1.	The Hasse invariant	1
2.	p-adic modular forms with growth conditions	2
3.	Basis of p -adic modular forms	6
4.	r = 1 and the q-expansion principle	8

1. The Hasse invariant

In the treatment of *p*-adic modular forms à la Katz, the modular form E_{p-1} played an important role since its *q*-expansion was 1 modulo *p*. We begin by defining the *Hasse invariant*, a Katz modular form over \mathbb{F}_p that will play a similar role.

Let R be a ring with p = 0. Let E/R be an elliptic curve and ω be a basis for $\underline{\omega}_{E/R}$. This determines a dual basis $\eta \in H^1(E, \mathcal{O}_E)$ by Serre duality. We note that the absolute Frobenius $F: E \to E$ induces a map $F^*: H^1(E, \mathcal{O}_E) \to H^1(E, \mathcal{O}_E)$.

Definition 1.1 (Hasse invariant). For E, ω as above, we define the Hasse invariant $A(E, \omega)$ such that $F^*(\eta) = A(E, \omega) \cdot \eta$.

Remark 1.2. Note that if R is a finite field, then $A(E,\omega) = 0$ if and only if E is supersingular.

Proposition 1.3. $A(E, \omega) \in M(\mathbb{F}_p, 1, p-1)$ is a (Katz) modular form over \mathbb{F}_p of weight p-1and level 1.

Proof. For $\lambda \in \mathbb{R}^{\times}$, if $\omega' = \lambda \omega$ then $\eta' = \lambda^{-1} \eta$, and so

$$F^*(\lambda^{-1}\eta) = \lambda^{-p}F^*(\eta) = \lambda^{-p}A(E,\omega) \cdot \eta = \lambda^{1-p}A(E,\omega) \cdot (\lambda^{-1}\eta),$$

Date: February 26, 2020.

and hence $A(E, \lambda \omega) = \lambda^{1-p} A(E, \omega)$.

Proposition 1.4. $A \in S(\mathbb{F}_p, 1, p-1)$ is a holomorphic (Katz) modular form over \mathbb{F}_p of weight p-1 and level 1. Moreover, its q-expansion is 1.

Proof. We use that $H^1(E, \mathcal{O}_E) = \text{Lie}E$ is the *R*-module of invariant derivations of E/R, and the action of F^* on $\eta \in H^1(E, \mathcal{O}_E)$ consists of taking the *p*-th iterate $F^*(\eta) = \eta^{\circ(p)}$.

The completion of the Tate curve along its identity section is $\hat{\mathbb{G}}_m$, and one can check that the canonical differential ω_{can} is simply dt/t. For the uniformizing parameter $t_0 = t - 1$, this becomes $\omega_{\text{can}} = dt_0/(1 + t_0)/$ This means that the invariant derivation η_{can} dual to ω_{can} satisfies $\eta_{\text{can}}(t_0) = 1 + t_0$. Now note $\eta_{\text{can}}^{\circ(p)}(t_0) = 1 + t_0$, and so $F^*(\eta_{\text{can}})$ agrees with η_{can} at t_0 . This is enough to conclude that $F^*(\eta_{\text{can}}) = \eta_{\text{can}}$.

In the study of (Katz) p-adic modular forms, we will use an appropriate lift of A to other coefficient rings.

Definition 1.5. We say that n is p-good if there exist a holomorphic (Katz) modular form $\tilde{A} \in S(\mathbb{Z}[1/n], n, p-1)$ such that $A = \tilde{A} \mod p$.

Proposition 1.6. The following n are p-good.

$$\begin{array}{c|c|c|c|c|c|} p & n \\ \hline 2 & 3 \le n \le 11, \ 2 \nmid n \\ \hline 3 & n \ge 2, \ 3 \nmid n \\ \ge 5 & n \ge 1, \ p \nmid n \\ \end{array}$$

Proof. This follows from the base-change theorems.

We want to define a suitable notion of *p*-adic modular forms in the style of Katz. If we hope that some form of the *q*-expansion principle to hold, then $\tilde{A}^{p^{N-1}}$ should "converge" to 1 as $N \to \infty$, since its *q* expansions are 1 modulo p^N . However, this is not consistent where $\tilde{A}(E,\omega) = 0$, i.e. at "supersingular" curves. So, for such a notion of *p*-adic modular forms, we will need to consider our test objects away from such supersingular locus.

2. *p*-ADIC MODULAR FORMS WITH GROWTH CONDITIONS

Let R_0 be a *p*-adically complete ring and a $\mathbb{Z}[1/n]$ -module. For any $r \in R_0$ and a *p*-good *n*, we will define the module $M(R_0, r, n, k)$ of *p*-adic modular forms with growth condition *r*. Roughly, we

restrict the possible test objects away from modular forms whose Hasse invariant is in a (*p*-adic) disk of radius $|r|_p$ around 0.

If r = 1, then we are restricting to the ordinary locus, and turns out that we will recover Serre's modular forms (at least for integral weights k). Taking r to have positive p-adic valuation will correspond to *overconvergent* modular forms.

Definition 2.1. A (Katz) *p*-adic modular form $f \in M(R_0, r, n, k)$ over R_0 of weight k, level n and growth r is a rule that assigns to a triple $(E/S, \alpha_n, Y)$ where

- (a) E/S is an elliptic curve over an R_0 -scheme S on which p is nilpotent,
- (b) α_n is a level *n* structure,
- (c) Y is a section of $\underline{\omega}^{\otimes 1-p}$ such that $Y \cdot \tilde{A}(E/S, \alpha_n) = r$,

a section $f(E/S, \alpha_n, Y) \in \underline{\omega}_{E/S}^{\otimes k}$ such that (i) f only depends on the S-isomorphism class of such triples and (ii) f commutes with base change of R_0 -schemes.

Remark 2.2. As in the definition of Katz modular forms, we may consider f as a rule from $(E/R, \omega, \alpha_n, Y)$ to R, for R_0 -algebras R with p nilpotent and $Y \in R$ with $Y \cdot \tilde{A}(E, \omega, \alpha_n) = r$ compatible with extension of scalars and such that

$$f(E/R, \lambda\omega, \alpha_n, \lambda^{p-1}Y) = \lambda^{-k} f(E/R, \omega, \alpha_n, Y).$$

Remark 2.3. We may also evaluate f for p-adically complete R_0 -algebras R by passing to the limit.

Definition 2.4. We say $f \in M(R_0, r, n, k)$ is holomorphic at infinity and denote $f \in S(R_0, r, n, k)$ if for all $N \ge 1$ and level n structures α_n the value

$$f(\operatorname{Tate}(q^n), \omega_{\operatorname{can}}, \alpha_n, r \cdot (\tilde{A}(\operatorname{Tate}(q^n), \omega_{\operatorname{can}}, \alpha_n))^{-1}) \in (R_0/p^N R_0) \otimes_{\mathbb{Z}[1/n]} \mathbb{Z}[1/n, \zeta_n]((q))$$

lies in $(R_0/p^N R_0) \otimes_{\mathbb{Z}[1/n]} \mathbb{Z}[1/n, \zeta_n] \llbracket q \rrbracket$

Note that, formally, we have

$$M(R_0, r, k, n) = \lim_{n \to \infty} M(R_0/p^N R_0, r, k, n) \text{ and } S(R_0, r, k, n) = \lim_{n \to \infty} S(R_0/p^N R_0, r, k, n).$$

Our first goal will be to understand a bit more about these spaces. We first do so in the case that p is nilpotent in R_0 , by giving it a moduli interpretation.

MURILO ZANARELLA

2.1. When p is nilpotent in R_0 . For now, we assume p is nilpotent in R_0 . Let $n \ge 3$ be p-good. We denote $\mathscr{L} := \underline{\omega}^{\otimes 1-p}$.

We consider the moduli problem

 $\mathcal{F}_{R_0,r,n}: S \mapsto \{S\text{-isomorphism classes of } (E/S, \alpha_n, Y)\}.$

By the definition of M_n , this is the same as

 $\mathcal{F}_{R_0,r,n}: S \mapsto \{R_0 \text{-morphisms } g: S \to M_n \otimes R_0, \text{ together with } Y \in g^* \mathscr{L} \text{ satisfying } Y \cdot g^* \tilde{A} = r \}.$

This is a subfunctor of the following functor

$$\mathcal{F}_{R_0,n}: S \mapsto \{R_0\text{-morphisms } g: S \to M_n \otimes R_0, \text{ together with } Y \in g^*\mathscr{L}\}$$

Geometrically, this last functor should be representable by the "total space" of \mathscr{L} . The next proposition makes this precise.

Proposition 2.5. $\mathcal{F}_{R_0,n}$ is representable by $\operatorname{Spec}_{M_n \otimes R_0}(\operatorname{Sym}^{\bullet}(\check{\mathscr{L}}))$. Moreover, $\mathcal{F}_{R_0,r,n}$ is representable by $\operatorname{Spec}_{M_n \otimes R_0}(\operatorname{Sym}^{\bullet}(\check{\mathscr{L}})/(\tilde{A}-r))$.

Proof. The first statement follows essentially from the definition of the scheme $\operatorname{Spec}_{M_n \otimes R_0}(\operatorname{Sym}^{\bullet}(\hat{\mathscr{L}}))$. Let us work this out and see how to integrate the growth condition.

Given a morphism $g: S \to M_n \otimes R_0$, cover $M_n \otimes R_0$ by open sets Spec B_i such that \mathscr{L} trivializes with invertible section \check{l}_i . Cover $g^{-1}(\operatorname{Spec} B_i)$ by open sets Spec A_{ij} . By the definition of the relative spectrum, we have $\operatorname{Spec}_{M_n \otimes R_0}(\operatorname{Sym}^{\bullet}(\check{\mathscr{L}}))|_{\operatorname{Spec} B_i} = \operatorname{Spec}(B_i[\check{l}_i]).$

Given $Y \in g^* \mathscr{L}$, we can lift the morphism $g: B_i \to A_{ij}$ to $\tilde{g}_{ij}: B_i[\check{l}_i] \to A_{ij}$ by

$$\sum_{k} b_k (\check{l}_i)^k \mapsto \sum_{k} b_k (Y \cdot g^* \check{l}_i)^k.$$

One can check that these glue to define $\tilde{g}: S \to \operatorname{Spec}_{M_n \otimes R_0}(\operatorname{Sym}^{\bullet}(\check{\mathscr{Z}}))$. Moreover, the data necessary for such a lift is exactly the data of giving such a $Y \in g^*\mathscr{L}$. This means that $\mathcal{F}_{R_0,n}$ is represented by $\operatorname{Spec}_{M_n \otimes R_0}(\operatorname{Sym}^{\bullet}(\check{\mathscr{Z}}))$.

If we want to specify a growth condition, then having $Y \cdot \tilde{A} = r$ is the same as \tilde{g}_{ij} factoring through $B_i[\check{l}_i]/(\tilde{A}-r)$ for all i, j. So $\mathcal{F}_{R_0,r,n}$ is represented by $\operatorname{Spec}_{M_n \otimes R_0}(\operatorname{Sym}^{\bullet}(\check{\mathscr{L}})/(\tilde{A}-r))$. \Box

As a consequence of this, we have the following description of (Katz) *p*-adic modular forms from (Katz) modular forms of varying weights.

Corollary 2.6. We have $M(R_0, r, n, k) = \left(\bigoplus_{j\geq 0} M(R_0, n, k + j(p-1))\right)/(\tilde{A} - r).$ Proof. We have $M(R_0, r, n, k) = H^0(\operatorname{Spec}_{M_n \otimes R_0}(\operatorname{Sym}^{\bullet}(\check{\mathscr{L}})/(\tilde{A} - r)), \underline{\omega}^{\otimes k})$, and this is

$$H^{0}(M_{n} \otimes R_{0}, \underline{\omega}^{\otimes k} \otimes \operatorname{Sym}^{\bullet}(\check{\mathscr{Z}})/(\tilde{A}-r)) = H^{0}(M_{n} \otimes R_{0}, \bigoplus_{j \ge 0} \underline{\omega}^{k+j(p-1)}/(\tilde{A}-r)).$$

Since $M_n \otimes R_0$ is affine, this is

$$\left(H^0(M_n \otimes R_0, \bigoplus_{j \ge 0} \underline{\omega}^{k+j(p-1)})\right) / (\tilde{A} - r) = \left(\bigoplus_{j \ge 0} M(R_0, n, k+j(p-1))\right) / (\tilde{A} - r). \qquad \Box$$

The subspace of holomorphic forms is what one would expect.

Proposition 2.7. The submodule $S(R_0, r, n, k) \subseteq M(R_0, r, n, k)$ corresponds to

$$H^0(\operatorname{Spec}_{\overline{M_n}\otimes R_0}(\operatorname{Sym}^{\bullet}(\check{\mathscr{L}})/(\tilde{A}-r),\underline{\omega}^{\otimes k}))$$

Proof. Essentially, this follows since the cusps on $\overline{M_n}$ are ordinary, i.e., \tilde{A} is invertible on the cusps.

We may assume $\zeta_n \in R_0$. Let $\infty = \overline{M_n} \otimes R_0 - M_n \otimes R_0$. We have seen that completion of $\overline{M_n} \otimes R_0$ has its ring isomorphic to a finite number of copies of $R_0[\![q]\!]$. The completion of $\operatorname{Spec}_{\overline{M_n} \otimes R_0}(\operatorname{Sym}^{\bullet}(\check{\mathscr{L}})/(\tilde{A}-r))$ along the inverse image of ∞ , hence, is a finite number of copies of

$$R_0[\![q]\!][Y]/(Y \cdot \tilde{A}(\operatorname{Tate}(q^n), \omega_{\operatorname{can}}, \alpha_n) - r).$$

Since $\tilde{A}(\text{Tate}(q^n), \omega_{\text{can}}, \alpha_n)$ is invertible, this ring is equal to $R_0[\![q]\!]$.

So similarly as before, a section of $H^0(\operatorname{Spec}_{M_n \otimes R_0}(\operatorname{Sym}^{\bullet}(\check{\mathscr{L}})/(\tilde{A}-r),\underline{\omega}^{\otimes k})$ can be extended to ∞ exactly when it is holomorphic. \Box

Corollary 2.8. We have $S(R_0, r, n, k) = H^0(\overline{M_n} \otimes R_0, \bigoplus_{j \ge 0} \underline{\omega}^{k+j(p-1)}/(\tilde{A}-r)).$

Proof. This is as in the previous corollary.

2.2. When R_0 is *p*-adically complete.

Definition 2.9. We say n is p, k-good if (i) n is p-good, (ii) $3 \le n \le 11$ if k = 1 or k = 0, p = 2.

Theorem 2.10. Let $n \ge 3$ be p, k-good. Let $r \in R_0$ be not a zero divisor. Then we have an isomorphism

$$\left(\varprojlim_{N} H^{0}(\overline{M_{n}}, \bigoplus_{j \ge 0} \underline{\omega}^{k+j(p-1)}) \otimes_{\mathbb{Z}[1/n]} (R_{0}/p^{N}R_{0})\right) / (\tilde{A}-r) \xrightarrow{\sim} \varprojlim_{N} S(R_{0}/p^{N}R_{0}, r, n, k) = S(R_{0}, r, n, k)$$

MURILO ZANARELLA

Concretely, this means that elements of $S(R_0, r, n, k)$ are formal sums $\sum_{a\geq 0} s_a$ where we have $s_a \in S(R_0, n, k + a(p-1))$ and $s_a \to 0$ when $a \to \infty$, where we identify two of these sums if they differ by a multiple of $(\tilde{A} - r)$.

Proof for k > 0. Let $\mathscr{S} = \bigoplus_{j \ge 0} \underline{\omega}^{k+j(p-1)}$ on $\overline{M_n}$. Put $\mathscr{S}_N = \mathscr{S} \otimes R_0/p^n R_0$ and consider the exact sequence

$$0 \to \mathscr{S}_N \xrightarrow{A-r} \mathscr{S}_N \to \mathscr{S}_N / (\tilde{A} - r) \to 0.$$

We saw in the proof of the base change theorems that $H^1(\overline{M_n}, \underline{\omega}^{\otimes l}) = 0$ if $l \geq 2$ or if l = 1 and $3 \leq n \leq 11$. So if n is p, k-good and k > 0, we have $H^1(\overline{M_n}, \mathscr{S}_N) = 0$.

By the base change theorems, we then get an inverse system

$$0 \to H^0(\overline{M_n}, \mathscr{S}) \otimes R_0/p^N R_0 \xrightarrow{\tilde{A}-r} H^0(\overline{M_n}, \mathscr{S}) \otimes R_0/p^N R_0 \to H^0(\overline{M_n}, \mathscr{S}_N/(\tilde{A}-r)) \to 0.$$

Since the transition maps for the left most modules are surjective, taking inverse limit is exact, and we get what we want.

For k = 0, we have instead that $H^1(\overline{M_n}, \mathscr{S}) = H^1(\overline{M_n}, \mathcal{O})$ so one has to be more careful. \Box

3. Basis of p-adic modular forms

By the previous result, we can describe (Katz) *p*-adic modular forms in terms of regular (Katz) modular forms and multiplications by \tilde{A} . To find a basis of *p*-adic modular forms, we first analyze the multiplication by \tilde{A} more closely.

Lemma 3.1. Let $n \geq 3$ be p-good. Then the map

$$S(\mathbb{Z}_p, n, k) \xrightarrow{\cdot \tilde{A}} S(\mathbb{Z}_p, n, k+p-1)$$

is injective, and its cokernel is a finite free \mathbb{Z}_p -module.

Proof. The injectivity follows from the q-expansion principle since \tilde{A} has q-expansions are invertible. We need to prove that the above cokernel is torsion free. It suffices to prove that $\tilde{A}f \in p \cdot S(\mathbb{Z}_p, n, k + p - 1) \implies f \in p \cdot S(\mathbb{Z}_p, n, k)$. Again, this follows from the q-expansion principle since the q-expansions of \tilde{A} are invertible.

This means that we can choose once and for all a direct sum decomposition

$$H^{0}(\overline{M_{n}} \otimes \mathbb{Z}_{p}, \underline{\omega}^{k+(j+1)(p-1)}) \simeq \tilde{A} \cdot H^{0}(\overline{M_{n}} \otimes \mathbb{Z}_{p}, \underline{\omega}^{k+j(p-1)}) \oplus B(n, k, j+1).$$

Setting $B(n,k,0) := H^0(\overline{M_n} \otimes \mathbb{Z}_p, \underline{\omega}^k)$ and $B(R_0, n, k, j) = B(n,k,j) \otimes_{\mathbb{Z}_p} R_0$ give us a direct sum decomposition

$$\bigoplus_{a=0}^{j} B(R_0, n, k, a) \xrightarrow{\sim} S(R_0, n, k+j(p-1)), \quad \sum_{a=0}^{j} b_a \mapsto \sum_{a=0}^{j} \tilde{A}^{j-a} b_a.$$

Definition 3.2. Let $B^{\text{rigid}}(R_0, n, k)$ be the R_0 -module consisting of formal sums $\sum_{a\geq 0} b_a$ for $b_a \in B(R_0, n, k, a)$ such that $b_a \to 0$, that is, such that for any N > 0 there exist M > 0 for which $b_a \in p^N B(R_0, n, k, a)$ for all $a \geq M$.

Theorem 3.3. Let $n \ge 3$ be p, k-good. Let $r \in R_0$ be not a zero divisor. Then we have an isomorphism

$$\phi_r \colon B^{\operatorname{rigid}}(R_0, n, k) \xrightarrow{\sim} S(R_0, r, n, k)$$

given by

$$\sum_{a\geq 0} b_a \mapsto \left((E/S, \alpha_n, Y) \mapsto \sum_{a\geq 0} b_a(E/S, \alpha_n) \cdot Y^a \right).$$

We may think of the image of $\sum_{a\geq 0} b_a$ as " $\sum_{a\geq 0} r^a \frac{b_a}{\tilde{A}^a}$."

Proof. Given $\sum_{a\geq 0} s_a$ with $s_a \in S(R_0, n, k+a(p-1))$, consider the decomposition $s_a = \sum_{i+j=a} \tilde{A}^i b_{j,a}$ with $b_{j,a} \in B(R_0, n, k, j)$. Note that $b_{j,a} \to 0$ as $a \to \infty$ uniformly in j. Then,

$$\sum_{a\geq 0} s_a = \sum_{a\geq 0} \sum_{i+j=a} \tilde{A}^i b_{j,a}$$
$$= \sum_{a\geq 0} \sum_{i+j=a} r^i b_{j,a} + (\tilde{A} - r) \left(\sum_{a\geq 0} \sum_{i+j=a} b_{j,a} \sum_{u+v=i-1} \tilde{A}^u r^v \right)$$

so as elements of $S(R_0, r, n, k)$, we have $\sum_{a \ge 0} s_a = \sum_{a \ge 0} \sum_{i+j=a} r^i b_{j,a}$. Then

$$\sum_{a \ge 0} s_a = \sum_{a \ge 0} \sum_{i+j=a} r^i b_{j,a} = \sum_{i \ge 0} \sum_{j \ge 0} r^i b_{j,i+j} = \sum_{i \ge 0} r_i \sum_{j \ge 0} b_{j,i+j}.$$

Letting $b'_i := \tilde{A}^i \sum_{j \ge 0} b_{j,i+j}$, we then have $\sum_{a \ge 0} s_a = \phi_r(\sum_{i \ge 0} b'_i)$.

For injectivity, it suffices to prove that if $\phi_r(\sum_{a\geq 0} b_a) = 0$, then $b_a \in p^N B(R_0, n, k, a)$ for all N. For a fixed N, there is M large such that $\phi_r(\sum_{a=0}^M b_a) \equiv 0 \mod p^N$ and $b_a \equiv 0 \mod p^N$ for a > M. Then $\sum_{a=0}^M r^a \tilde{A}^{M-a} b_a \equiv 0 \mod p^N$, and hence we conclude that $r^a b_a \in p^N B(R_0, n, k, a)$ for all N, a. Since r is not a zero divisor, this means $b_a = 0$.

Corollary 3.4. Consider the map $S(R_0, r, n, k) \to S(R_0, 1, n, k)$ defined modularly by $(E/S, \alpha_n, Y) \mapsto (E/S, \alpha_n, rY)$. This is injective, and we have a commutative diagram

$$B^{\text{rigid}}(R_0, n, k) \xrightarrow{\phi_{r,1}} B^{\text{rigid}}(R_0, n, k)$$
$$\downarrow^{\phi_r} \qquad \qquad \qquad \downarrow^{\phi_1}$$
$$S(R_0, r, n, k) \longrightarrow S(R_0, 1, n, k)$$

where $\phi_{r,1}$: $\sum_{a\geq 0} b_a \mapsto \sum_{a\geq 0} r^a b_a$.

4. r = 1 and the q-expansion principle

When r = 1, we obtain a q-expansion principle for (Katz) p-adic modular forms by reducing to the q-expansion principle we have seen before.

Theorem 4.1. Let $n \ge 3$ be p, k-good. Let $x \in R_0$ be a divisor of p^N for some N > 0. For $f \in S(R_0, 1, n, k)$, the following are equivalent:

- (1) $f \in x \cdot S(R_0, 1, n, k),$
- (2) the q-expansions of f all lie in $x \cdot R_0[\zeta_n][\![q]\!]$,
- (3) on each of the $\varphi(n)$ connected components of $\overline{M_n} \otimes \mathbb{Z}[1/n, \zeta_n]$, there is at least one cusp where the q-expansion of f lies in $x \cdot R_0[\zeta_n][\![q]\!]$.

Proof. It suffices to prove (3) \implies (1). Let $f = \phi_1(\sum_{a\geq 0} b_a)$. If M > 0 is such that $b_a \in p^N \cdot B(R_0, n, k, a)$ for a > M, then we may assume without loss of generality that $f = \phi_1(\sum_{a=0}^M b_a)$. Now the q-expansion of f at $(\text{Tate}(q^n), \omega_{\text{can}}, \alpha_n, \tilde{A}^{-1})$ is the same as that of

$$\sum_{a=0}^{M} b_a \tilde{A}^{-a} = \frac{\sum_{a=0}^{M} b_a \tilde{A}^{M-a}}{\tilde{A}^M}.$$

Hence $\sum_{a=0}^{M} b_a \tilde{A}^{M-a} \in S(R_0, n, k + M(p-1))$ has q-expansion lying in $x \cdot R_0[\zeta_n][\![q]\!]$ in at least one cusp in each component. By the regular q-expansion principle, this means that $\sum_{a=0}^{M} b_a \tilde{A}^{M-a} \in x \cdot S(R_0, n, k + M(p-1))$, and hence $b_a \in x \cdot B(R_0, n, k, a)$ for all a. This implies that $f \in x \cdot S(R_0, 1, n, k)$.

Now we see that we recover Serre's definition, at least when the weight is integral.

Proposition 4.2. Let $n \geq 3$ be p, k-good. Suppose that for each cusp α of $\overline{M_n} \otimes \mathbb{Z}[\zeta_n]$ we are given a power series $f_\alpha \in R_0[\zeta_n][\![q]\!]$. Then the following are equivalent:

(1) The f_{α} are the q-expansions of an element $f \in S(R_0, 1, n, k)$.

(2) For every N > 0, there is an integer $M \equiv 0 \mod p^{N-1}$ and a modular form $g_N \in S(R_0, n, k + M(p-1))$ whose q-expansions are congruent modulo p^N to the given f_{α} .

Proof. (1) \implies (2): As in the proof of the theorem above, for every M sufficiently large there is $g \in S(R_0, n, k, M(p-1))$ such that the q-expansions of f agree with the q-expansions of $g\tilde{A}^{-M}$. We choose $M \equiv 0 \mod p^{N-1}$. Since we have the q expansion congruences $\tilde{A}(q) \equiv 1 \mod p$, from $p^{N-1} \mid M$ we obtain $\tilde{A}^M(q) \equiv 1 \mod p^N$. We conclude that the q-expansions as f and g agree modulo N.

(2) \implies (1): Possibly multiplying g_N by a power of $\tilde{A}^{p^{N-1}}$, we may assume their weights $k+M_N(p-1)$ are increasing. Then $(g_{N+1}-g_N\tilde{A}^{M_{N+1}-M_N})$ has q-expansion a multiple of p^N . Hence $(g_{N+1}-g_N\tilde{A}^{M_{N+1}-M_N}) \in p^N S(R_0, n, k+M_{N+1}(p-1))$. Then $f = \sum_{N\geq 1} (g_{N+1}-g_N\tilde{A}^{M_{N+1}-M_N})$ is a well defined element of $S(R_0, 1, n, k)$ that agree with the q-expansions of g_N modulo p^N . \Box

Remark 4.3. Similarly as in Borys's talk, we can obtain analogues to the above results for n = 1, 2 (still requiring that n be p, k-good) by considering the space of such forms of level n inside the space of forms of larger levels, and mapping down via projectors.